e \/\Ve establish a unified view on black box variational inference with generalized

divergences as a form of biased importance sampling.

¢ \/\Ve use these Insights to construct a new variational bound with favorable
oroperties with respect to a variance-bias trade-off.

® [N our experiments, the resulting posterior covariances are closer to the true

posterior, and likelihoods on heldout data are higher than with traditional black

box variational inference.

Model with joint p.d.f. p()¢( %)

observed latent

— seek posterior p(z|x) =

Problem: intractable denominator p(x) = [ p(x, z)dz

Black box variational inference (BBVI) estimates a lower bound £(\) on
log p(x) based on Monte Carlo samples from a variational distribution gx(z).
Taking £(\) as a proxy for log p(x) results in a bias and a sampling variance.
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Lower bound: p(x) > f(p(x)) > E,_q, f(l;(:(zz))>

For any concave function fwith (&) < &

— importance sampling: f = 1d
— (traditional) Kullback-Leibler BBVI: f = log + const.
- BBVI with alpha-divergence: f(®)(£) oc €1

Observation: ¢ = Z(:(’;)) is highly peaked in z-space.

= |f f(£) depends algebraically on &, as in the alpha bound, then the sampling
variance Is high and reparemeterization gradients are noisy.

= |f f(£) depends only on log &, as in the KL bound, then the sampling
variance Is lower and reparemeterization gradients are less noisy.
However, the logarithm introduces a bias, I.e., the KL-bound Is less tight.

Aim: Lower bound with small bias and small gradient noise.

Taylor expansion of (:(;)) — exp[log p(x, z) — log gx(2)]
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The proposed PVI bound is tighter than the traditional Kullback-Leibler bound.
At the same time, the bound has smaller gradient noise than the alpha bound,
leading to faster convergence of stochastic gradient ascent (see experiments).
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With increasing dimensionality of the
latent space, the gradient noise
grows exponentially for the alpha-V!
obound, and only algebraically for the
proposed PVI bound (green line).
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The proposed PVI converges faster S é
than BBVI with an alpha divergence. 52
This may be explained by the smaller 58
gradient noise, see above. 25
We train a VAE on subsets of different %J
sizes of the MNIST data set. Our proposeo ©
PVI method reaches higher predictive o

likelihoods when the data set is small.
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