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TL;DR
We propose a new non-parametric variational Langevin-type 

approximation that makes no parametric assumptions on the posterior 

distribution. It allows practitioners to impose arbitrary independence 

structures between parameters, resulting in faster training. 

• Stochastic gradient Markov chain Monte Carlo (SGMCMC) methods 

iteratively sample from the posterior distribution:

𝑝 𝜃 𝒟 ∝ exp −𝑈(𝜃) where 𝑈 𝜃 = − log 𝑝 𝜃,𝒟 .

• A classic example is Stochastic Gradient Langevin Dynamics:

𝜃(𝑡+1) = 𝜃(𝑡) −
𝜖𝑡
2
∇𝜃 ෡𝑈 𝜃 𝑡 ; ෩𝒟 𝑡 + 𝜉𝑡 , 𝜉𝑡 ∼ 𝒩 0, 𝜖𝑡𝐼 ,

෡𝑈 𝜃; ෩𝒟 = −
|𝒟|

෩𝐷
log 𝑝 ෩𝒟 𝜃 − log 𝑝 𝜃 , 𝔼෩𝒟

෡𝑈 𝜃; ෩𝒟 = 𝑈(𝜃).

• Structured VI best approximates 𝑝 𝜃 𝒟 with a restricted distribution 

𝑞 𝜃 = ς𝑖=1
𝑀 𝑞𝑖(𝜃𝑖) that assumes 𝜃𝑖 ⊥ 𝜃𝑗 for 𝑖 ≠ 𝑗.

• This is casted as an optimization problem, minimizing the KL-

divergence between them, yielding the following optimal results:

𝑞∗ 𝜃 = min
𝑞

𝐷𝐾𝐿(𝑞(𝜃)||𝑝(𝜃|𝒟)) = min
𝑞

𝔼𝑞 log
𝑞(𝜃)

𝑝(𝜃|𝒟)

= exp ෍
𝑖=1

𝑀

𝔼෩𝜃¬𝑖∼𝑞¬𝑖 log 𝜃𝑖 , ෨𝜃¬𝑖 , 𝒟

• Typically, parametric assumptions are placed on each 𝑞𝑖 and 

Coordinate Ascent is performed on the summands of 𝑞∗ 𝜃 .
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Preliminaries

Structured SGMCMC
• Instead, we want to sample directly from 𝑞∗ 𝜃 via SGMCMC and 

avoid any parametric assumptions on 𝑞 𝜃 .

• To do so, we perform SGMCMC with ෡𝑈 𝜃; ෩𝒟 replaced by:

෡𝑈 𝑆 𝜃; ෩𝒟 =෍
𝑖=1

𝑀

𝔼෩𝜃¬𝑖∼𝑞¬𝑖
෡𝑈 {𝜃𝑖 , ෨𝜃¬𝑖}; ෩𝒟 ,

=෍
𝑖=1

𝑀

𝔼෩𝜃¬𝑖∼𝑞¬𝑖 −
𝒟

෩𝐷
log 𝑝 ෩𝒟 𝜃𝑖 , ෨𝜃¬𝑖 − log 𝑝 𝜃𝑖 , ෨𝜃¬𝑖 .

• When generating 𝜃(𝑡+1), we approximate 𝔼෩𝜃¬𝑖∼𝑞¬𝑖 with MC samples: 

෨𝜃¬𝑖 ∼ ς𝑗≠𝑖{𝜃𝑗
1
, 𝜃𝑗

2
, … , 𝜃𝑗

𝑡
}

• Shown above are the accuracy, integrated autocorrelation time 

(IAC), and effective sample size (ESS) as a function of the number 

of independent parameter groups for a NN trained on MNIST. 

• More broken correlations equals improvement on IAC, ESS.

• Performance of Sd-SGMCMC improves compared to S-SGMCMC.

• Accuracy vs. wall-clock time for two base SGMCMC methods, Sd-

SGLD and some VI baselines. Sd-SGMCMC methods converge 

much faster and sometimes they outperform the VI baselines.

Structured Dropout SGMCMC

• Generating a sample for 𝜃 with Structured SGMCMC requires evaluating 
෡𝑈 𝑆 (𝜃; ෩𝒟) which requires 𝒪(𝑀) model forward passes.

• To avoid having computation scaled by the number of parameter groups, we 

develop a further approximation to sampling from 𝑞∗ 𝜃 .

• First, we recognize that:
෡𝑈 𝑆 𝜃; ෩𝒟 ≡ 𝑀𝔼𝑟∼Cat(𝑀−1,…,𝑀−1)𝔼෩𝜃∼𝑞 ෡𝑈 𝑟𝜃 + 1 − 𝑟 ෨𝜃; ෩𝒟

• Using MC samples for the outer expectation breaks scaling issues but leads 

to sparse gradients (⇒ not every parameter group being sampled).

• Proposed method replaces 𝑟 ∼ Cat(𝑀−1, … ,𝑀−1) with 𝑟 ∼ 𝑝mask where 𝑟 ∈
0,1 𝑀 and σ𝑖 𝑟𝑖 > 0, which yields a new approximate energy function:

෡𝑈 𝑆𝑑 𝜃; ෩𝒟 ≡
𝑀

𝔼𝑟∼𝑝mask
σ𝑖 𝑟𝑖

𝔼𝑟∼𝑝mask
𝔼෩𝜃∼𝑞 ෡𝑈 𝑟𝜃 + 1 − 𝑟 ෨𝜃; ෩𝒟

• Example masking distributions:

𝑝mask 𝑟 =ෑ
𝑖=1

𝑀

Unif 𝑟𝑖; (0,1) 𝑝mask 𝑟 =ෑ
𝑖=1

𝑀

Bern 𝑟𝑖; 𝜋 𝟏(∃𝑖𝑟𝑖 = 1)

• Structured Dropout SGMCMC can be seen as an interpolation between 

Structured and Unstructured SGMCMC:

𝑟՜
𝑑
Cat 𝑀−1, … ,𝑀−1 ⇒ 𝑈 𝑆𝑑 ՜ 𝑈(𝑆) 𝑟՜

𝑑
1 𝑀 ⇒ 𝑈 𝑆𝑑 ՜ 𝑈
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