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Abstract. In order to avoid overfitting, it is common practice to reg-
ularize linear prediction models using squared or absolute-value norms
of the model parameters. In our article we consider a new method of
regularization: Huber-norm regularization imposes a combination of `1
and `2-norm regularization on the model parameters. We derive the dual
optimization problem, prove an upper bound on the statistical risk of
the model class by means of the Rademacher complexity and establish
a simple type of oracle inequality on the optimality of the decision rule.
Empirically, we observe that logistic regression with Huber-norm regu-
larizer outperforms `1-norm, `2-norm, and elastic-net regularization for
a wide range of benchmark data sets.

1 Introduction

Linear classification and regression models—such as the support vector machine
(SVM) and logistic and linear regression—are widely used in machine learning,
and regularized empirical-risk minimization is a standard approach to optimizing
their parameters. To avoid overfitting, linear models are typically either densely
or sparsely regularized. With an `2 regularizer, one obtains a dense weight vector
in which all features contribute to the prediction task. For interpretability, one
is often interested in a sparse solution in which many entries of the weight vector
are zero. To this end, one may employ an `1 absolute value norm regularizer [25,
18]. While this type of regularization may lead to lower predictive accuracies
than `2 regularization [10], the result focuses only on the most relevant features.

This paper promotes the idea of using a combination of both types of regu-
larization, thus combining the best of both worlds. Instead of using just a single
weight vector w that is either dense or sparse, we employ a sum of two weight
vectors w+v. While w is `2 regularized and therefore dense, v is `1 regularized
and therefore sparse. Having two different weight vectors with different regular-
izations allows linear models to more flexibly fit the data. It comes at a moderate
computational cost, since the number of parameters is doubled.



Fig. 1. Geometrical illustration of the proposed Huber-norm regularizer and compari-
son to common regularizers.

We first show that the proposed combination of two weight vectors is mathe-
matically equivalent to imposing Huber-norm [7] regularization on the empirical
risk of a linear model. This approach is known to be statistically more robust [8]
in the sense that individual sparse weights do not necessarily involve a huge cost
in the loss. This Huber norm involves quadratic costs near the origin and linear
costs far away from the origin, this way penalizing outliers less severely. Because
of this analogy, we call our method Huber-norm regularization. We derive uni-
form and data-dependent upper bounds on the statistical risk of the model class
by means of the Rademacher complexity. We deduce a simple type of oracle
inequality on the inference efficiency of the decision rule which measures the
deviation of the model’s risk from the lowest risk of any model in the class.

Our empirical studies show that Huber-norm regularized logistic regression
outperforms `1- and `2-regularized as well as elastic-net-regularized logistic re-
gression [26] in the majority of cases over a wide range of benchmark problems.
To support this claim we provide evidence based on empirical studies on the
UCI machine learning repository, where our method performs best among the
compared methods on 23 out of 31 data sets. On particular data set—the well-
known Iris data set—Huber-norm regularization leads to a prediction accuracy
of 0.96 while the next-best method merely achieves 0.84.

Our paper is organized as follows. Section 2 reviews related work. In Section 3,
we describe our model and its basic properties. We also prove the equivalence
of the two weight vectors to Huber-norm regularization in the conventional set-
ting. In Section 4 we then present the underlying theoretical foundations of our
approach, where we prove an upper bound on the statistical risk. We present
our experimental results in section 5 and conclude in Section 6.

2 Related Work

Comparisons between `1-norm and `2-norm SVMs are ubiquitous in the liter-
ature [25, 14, 13]. A robust alternative to the SVM based on the smooth ramp
loss [23] requires the convex-concave procedure to convert this non-convex op-
timization problem into a convex one [24]. Another way of making the SVM
robust [20] is based on the weighted LS-SVM that yields sparse results. Differ-
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ent type of classification problems for the SVM (both convex and non-convex)
are discussed by Hailong et al. [6] where the conjugate gradient approach is used
to solve the optimization problem.

Our novel type of regularizer relates to the elastic-net regularizer [26] that
simply amounts to taking the sum of an `1 and `2 regularizer. Our proposed
regularizer is very different, as is evident from Figure 1. The plot shows contours
of different regularizers in comparison. As a major difference between the elastic
net and our approach, our regularizer grows asymptotically linearly for large
weight vectors whereas the elastic net grows asymptotically quadratically. Lastly,
our theoretical contributions are based on fundamental work by Vapnik [22].

The Huber norm [7] is frequently used as a loss function; it penalizes outliers
asymptotically linearly which makes it more robust than the squared loss. The
Huber norm is used as a regularization term of optimization problems in image
super resolution [21] and other computer-graphics problems. The inverse Huber
function [17] has been studied as a regularizer for regression problems. While the
Huber norm penalizes large weights asymptotically linearly, the inverse Huber
function imposes an asymptotically squared penalty on large weights.

3 Huber-Norm-Regularized Linear Models

In this section, after formally introducing the problem setting and optimization
criterion, we show that this optimization criterion has an equivalent formulation
in which the Huber norm becomes explicit. We derive the dual form and show
how Huber-norm regularization for linear models can be implemented.

3.1 Problem Setting and Preliminaries

We consider the standard supervised prediction setup, where we are given a
training sample S = {xi, yi}ni=1 from a space X × Y with X = Rd. We aim
at finding a linear function f that predicts well. A common way to achieve
this is to first define a loss function ` : R × Y → R+ ∪ {0} that measures the
deviation of the prediction f(x) from the correct value y, such as the logistic loss
`(f(x), y) := log(1 + exp(−yf(x))) or hinge loss `(f(x), y) := max(0, 1− yf(x)).
The empirical risk is then the averaged loss over the training sample, L̂n(f) =
1
n

∑n
i=1 `(f(xi), yi) of f .

In this paper we consider methods that employ linear prediction functions
f(x) = w>x. To avoid overfitting, one usually uses a regularizer such as the `1
regularizer R1(w) = ‖w‖1, the `2 regularizer R2(w) = ‖w‖22, or the elastic-net

regularizer Ren(w) = ‖w‖1 +‖w‖22. This results in the regularized empirical risk
minimization or short reg-ERM problem:

min
w

λR(w) +
1

n

n∑
i=1

`(yi,w
>xi).

The `1 and elastic-net regularizers produce sparse, `2-norm regularizer dense
weight vectors. Hence, depending on the problem, the regularizer can be chosen
to match the underlying sparsity of the problem.
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3.2 Linear Models with Sums of Dense and Sparse Weights

Using `1-, `2-, or elastic-net-regularized ERM either produces dense or sparse
solutions. In this paper, we argue it can be beneficial to produce dense solutions
with pronounced feature weights as in `1-norm regularized methods. We pro-
pose to consider linear models of the form f(x) := (v + w)>x (for notational
convenience, we disregard constant offsets and assume that the first element of
each x is a constant 1) and the regularizer RH(v,w) = λ ‖v‖1 + µ ‖w‖22, hence
resulting in the following optimization problem.

Optimization Problem 1 (Sums of dense and sparse weights) Given
λ, µ > 0 and loss function `(t, y), solve:

(ŵ, v̂) = arg min
v,w

G(w,v, S)

with G(w,v, S) = λ||v||1 + µ ‖w‖22 +
1

n

n∑
i=1

`(yi, (w + v)>xi), (1)

where || · ||2 and || · ||1 denote standard `2-norm and `1-norm correspondingly.

For reasons that will become clear in the section below we call the method Huber-
regularized empirical risk minimization or short Huber-regERM. Note that by
letting λ→∞, we obtain the classic `2-norm regularization, while letting µ→∞
leads to `1-norm regularization. Thus these methods are obtained as limit cases
of our method. Elastic-net-regularization is not a special case of this framework,
but it could be obtained by enforcing an additional constraint v = w.

3.3 Geometry of the Huber Norm

The following geometrical interpretation lets us compare linear models with sums
of dense and sparse weights to the `1, `2, and elastic-net regularizers. We prove
that Problem 1 is equivalent to the following problem.

Optimization Problem 2 (Equivalent Huber-Norm Problem)
Optimization Problem 1 can equivalently be formulated as:

ẑ = arg min
z

RH(z) +
1

n

n∑
i=1

`(yi, z
>xi) (2)

where RH(z) =
∑d
i=1 rH(zi), and rH(zi) =

{
λ
(
|zi| − λ

4µ

)
if |zi| ≥ λ

2µ

µz2i , otherwise
.

Note that RH(z) is the Huber norm of z. While the Huber norm is often used as
a robust loss function that is less sensitive to outliers, Optimization Problem 2
employs the Huber norm as regularizer. Intuitively, this results in a regularization
scheme that is less sensitive to individual features which have a stong impact on
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f than `2 regularization. Figure 1 illustrates isotropic lines for the Huber-norm
regularizer and known regularizers for λ = µ = 1. The Huber norm is composed
of linear and squared segments. While it does not encourage sparsity as the `1
regularizer does, it encourages that most attributes only have a small impact on
the decision function.

Proof (Equivalence of Optimization Problems 1 and 2). Let z = w+v. Problem 1
can then be formulated as

min
w,v

G(w,v, S) = min
z,v

λ||v||1 + µ ‖z− v‖22 +
1

n

n∑
i=1

`(yi, z
>xi)

= min
z

(
µmin

v

(
λ

µ
||v||1 + ‖z− v‖22

)
+

1

n

n∑
i=1

`(yi, z
>xi)

)
. (3)

Let us define R(v, z) := c||v||1 + ‖z− v‖22 where c := λ
µ . It remains to be shown

that min
v
R(v, z) is a Huber-norm regularizer.

Simplifying R = v>v − 2v>
(
z− c

2 sgn(v)
)

+ z>z, we find

min
v
R = min

v(v1,...,vd)

(
d∑
i=1

v2i − 2vi(zi −
c

2
sgn(vi))

)
+

d∑
i=1

z2i . (4)

For each i ∈ {1, ..., d} we minimize Ri := v2i − 2vi(zi− c
2 sgn(vi)) with respect to

vi. This is equivalent to:min
vi

v2i − 2(zi − c
2 )vi if vi > 0

min
vi

v2i − 2(zi + c
2 )vi if vi ≤ 0.

We can minimize each of these two quadratic terms analytically:[
−(zi − c

2 )2 if zi ∈ A := {z ∈ R : |z| ≥ c
2}

0 if zi ∈ Ac := {z ∈ R : |z| < c
2}.

This means, that for Equation 4 we have explicitly:

min
v
R =

d∑
i=1

(
z2i −

(
zi −

c

2

)2

Izi∈A

)
=

d∑
i=1

(
z2i Izi∈AC + c

(
|zi| −

c

4

)
Izi∈A

)
.

This is exactly the Huber-norm regularizer RH(z) of Optimization Problem 2.
ut

3.4 Dual Problem

In order to classify a training point, we need to compute the scalar product
(w+v)>x which may be expensive when the dimension of vectors w,v is large.
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One possible solution to overcome this consists in considering a weighted sum of
constraints together with an objective function computed on the training sample.
This leads to a dual approach. Steinwart [19] gives a general overview of dual
optimization problems for SVMs using `2- and `1-norm regularizers. The dual
form of the optimization problem depends on the loss function. We complete
Steinwart’s overview by deriving the dual form of the Huber-norm regularized
SVM in the following.

Optimization Problem 3 (Dual Huber-Norm SVM Problem)
Optimization Problem 1 with hinge-loss loss function (Huber-Norm SVM)
has an equivalent dual form which can be formulated as follows:

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
>
i xj

s.t. α ∈ [0, C]n ∧ ||X>α||∞ ≤
λ

2µ
, (5)

where C := 1
2nµ and X = (x1, ...,xn) ∈ Rn×d.

Proof. The Lagrangian L(w,v, ξ, α, η) that corresponds to Equation 1 is given
as follows:

L(w,v, ξ, α, η) := C

n∑
i=1

ξi +
λ

2µ
||v||1 +

1

2
||w||22+

n∑
i=1

αi
(
1− yi(w> + v>)xi − ξi

)
−

n∑
i=1

ηiξi, (6)

where α = (α1, ..., αn) ∈ [0,∞)n and η = (η1, ..., ηn) ∈ [0,∞)n. So the dual
problem [3] can be written as:

max
α,η

inf
w,v,ξ

L(w,v, ξ, α, η). (7)

Grouping the terms in the Lagrangian gives us:

L(w,v, ξ, α, η) =

n∑
i=1

(C − αi − ηi)ξi +
λ

2µ
||v||1

−
n∑
i=1

αiyiv
>xi +

1

2
||w||22 −

n∑
i=1

αiyiw
>xi +

n∑
i=1

αi.

Now, considering the infimum with respect to v and w separately, and using the
definition of a conjugate function [3, 19] we obtain:

inf
v

λ

2µ
||v||1 −

n∑
i=1

αiyiv
>xi = − sup

v

λ

2µ
||v||1 + v>

n∑
i=1

αiyixi

=

{
0, when |X>α||∞ ≤ λ

2µ

−∞, otherwise,
(8)
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where X = (x1, ...,xn) ∈ Rn×d is the data matrix whose rows x>i are the in-
stances and ‖·‖∞ -supremum norm in Rd. Analogously, for w we have:

inf
w

1

2
||w||22 −

n∑
i=1

αiyiw
>xi = − sup

w
−1

2
||w||22 + w>

n∑
i=1

αiyixi

=
1

2

(
n∑
i=1

αiyixi

)>( n∑
i=1

αiyixi

)
. (9)

Finally, computing the gradient with respect to ξ gives that for each i ∈ {1, ...n}:

C − ηi − αi = 0⇔ αi = C − ηi. (10)

Now, for fixed λ, µ, and X, define P = {α|α ∈ [0, C]n ∧ ||X>α||∞ ≤ λ
2µ},where

y = (y1, ..., yn) ∈ Rn. Substituting Equations 8, 9, and 10 into Equation 7 gives
the following dual problem:

max
α∈P

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjx
>
i xj , (11)

which is a quadratic optimization problem within set P and can be solved with
known methods.

ut

By close inspection of Equation 11, we observe that our dual optimization
problem closely resembles the one for SVM using `2 regularization, but with a
difference in the form of the domain P of the optimization problem.

3.5 Algorithm & Implementation

Algorithm 1 implements Huber-regularized empirical risk minimization for linear
models. The algorithm works by alternatingly minimizing the occurring `1-norm
and `2-norm regularized minimization problems, respectively. For each step of
optimization procedure we use gradient descent, assuming that the other vector
is constant. The gradient of the `1 norm of v is not defined for v = 0; here, we
use subgradients [3].

4 Theoretical Analysis

In this section we present a theoretical analysis of the proposed Huber-norm
regularizer for linear models. We obtain bounds on the statistical risk based on
the established framework of Rademacher complexities [2, 16] and, consequently,
on the norms of the vectors v,w and number of training samples n [2].

7



Algorithm 1 Optimization Procedure

1: Input: S = {xi, yi}ni=1

2: w = 0, v = 0.
3: repeat
4: solve ŵ := arg min

w
G(w,v, S) by gradient descent,

5: solve v̂ := arg min
v

G(ŵ,v, S) by gradient descent,

6: let w,v = (ŵ, v̂).
7: until convergence.
8: Output: w,v

4.1 Preliminaries and Aim

Let S = {xi, yi}ni=1 be a sample of n training points that are independently
drawn from one and the same distribution PX,Y over X ×Y, where X = Rd; let
the output space Y be discrete for classification and continuous for regression.
In this theoretical analysis, we study the Huber-regERM model class

F := {f : x 7→ (w + v)>x : Rd → R| ‖w‖2 ≤W, ‖v‖2 ≤ V }, (12)

where W and V are initially unknown constants. Loss function ` : R × Y →
R+ ∪ {0} may be any convex loss function that is L-Lipschitz continuous and
absolutely bounded by constant B ∈ R. The aim of our theoretical analysis is
to obtain bounds on the deviation of the risk L(f) = EPX,Y

[`(f(x), y)] of the

model f ∈ F from empirical risk L̂n(f) = 1
n

∑n
i=1 `(f(xi), yi).

Let {σi}ni=1 be independent Rademacher random variables, meaning that
each of them is uniformly distributed over {−1,+1}. Denote by Σ the joint
uniform distribution of σ1, . . . , σn. Then the empirical Rademacher complexity
is defined as

R̂S(` ◦ F) := EΣ

[
sup
f∈F

1

n

n∑
i=1

σi`(f(xi), yi))

]
, (13)

and the (theoretical) Rademacher complexity [2, 16] is defined as Rn(` ◦ F) :=

ES [R̂S(`◦F)]. Here, the expectation is taken under the distribution of the sample
S. It has been shown [2, 16] that when ` is L-Lipschitz continuous in the second
argument, then with probability at least 1− δ, for all f ∈ F :

L(f) ≤ L̂n(f) + 2LES
[
R̂S(F)

]
+B

√
log δ−1

2n
. (14)

4.2 Bounds on the Risk of Huber-regularized Linear Models

Our main theoretical contributions are bounds on statistical risk based on data-
dependent and uniform upper bounds on the Rademacher complexity of the
model class F defined by Equation 12.
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Theorem 1 (Uniform risk bound for Huber regularization) Let F be
defined by Equation 12, let ` be a L-Lipschitz continuous loss function, and
let R be a constant such that |`(t, y)| ≤ R for all t ∈ R and y ∈ Y. Let the `2
norm of all instances is bounded by ‖x‖2 ≤ Rx with probability 1 by some Rx.
Then, for every δ ∈ (0, 1), with probability at least 1− δ the following holds for
all f ∈ F :

L(f) ≤ L̂n(f) + 2L
√

2(W 2 + V 2)

n
Rx +R

√
log δ−1

2n
(15)

where W =
√

R
µ , V = R

λ

Instead of relying on a uniform bound Rx on the data xi, we can give the
following data-dependent bound on the risk.

Proposition 1 (Data-dependent risk bound for Huber regularization)
Let F be defined by Equation 12, and let ` be a L-Lipschitz continuous loss
function. Then, for every δ ∈ (0, 1), with probability at least 1− δ the following
holds for all f ∈ F , where W , V , and R as defined as in Theorem 1:

L(f) ≤ L̂n(f) + 2L

√
2(W 2 + V 2)

n∑
i=1

‖xi‖2

n
+ (2L+ 1)R

√
log( 2

δ )

2n
. (16)

4.3 Lemmata and Auxilary Results

The risk bounds are based on the following three lemmas.

Lemma 1 For the functional class F of Equation 12, the following data-
dependend bound on the empirical Rademacher complexity holds:

R̂S(F) ≤

√
2(W 2 + V 2)

n∑
i=1

‖xi‖2

n
. (17)

Lemma 2 For the functional class F of Equation 12, the (theoretical)
Rademacher complexity is bounded as follows:

Rn(F) = ES [R̂S(F)] ≤
√

2(W 2 + V 2)

n
Rx. (18)

where Rx is a constant such that ||x||2 ≤ Rx almost surely under PX .

Lemma 3 Let (ŵ, v̂) = arg min
v,w

G(w,v, S). Then ‖ŵ‖2≤
√

R
µ , ‖v̂‖2≤

R
λ , where

R as in Theorem 1.
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Proof (Lemma 1). Following the ideas presented by Mohri [16], we rewrite the
empirical Rademacher complexity using the Cauchy-Schwartz inequality:

R̂S(F) =
1

n
Eσ

[
sup

‖w‖2≤W,‖v‖2≤V

n∑
i=1

(
σi(w + v)>xi

)]

=
1

n
Eσ

[
sup

‖w‖2≤W,‖v‖2≤V
(w + v)>

n∑
i=1

σixi

]

≤ 1

n
Eσ

[
sup

‖w‖2≤W,‖v‖2≤V
‖w + v‖2

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]
. (19)

Using the inequality
∑d
i=1(wi + vi)

2 ≤ 2
∑d
i=1(w2

i + v2i ) for the right-hand
side of Equation 19, according to the restrictions on the norms of w,v we get:

Eσ

[
sup

‖w‖2≤W,‖v‖2≤V
‖w + v‖2

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]
≤
√

2(W 2 + V 2)Eσ

[∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]
(20)

and because of Jensen’s inequality for Eσ [‖·‖], linearity of expectation and in-
dependence of σi, σj for j 6= i we obtain:

Eσ

[∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

]
≤

√√√√√Eσ

 n∑
i,j=1

σiσjxi
txj


=

√√√√ n∑
i=1

Eσ

[
‖xi‖22

]
=

√√√√ n∑
i=1

‖xi‖22. (21)

Uniting the results of Inequality 20 and Equation 21 in Equation 19 we get the
statement of Lemma 1.

ut

Proof (Lemma 2). Using Lemma 1 and the assumption that the xi are uniformly
bounded by constant Rx we obtain:

R̂S(F) ≤
√

2(W 2 + V 2)

n
Rx. (22)

Equation 22 no longer depends on the sample, and therefore Lemma 2 follows.
ut

Naturally, one may not have any a-priori knowledge about the constants W
and V that restrict the possible values of w and v in Inequality 18. Despite that,
for a given optimization problem that includes the current class of models, one
can apply certain arguments from which one can infer bounds for W and V .
Lemma 3 gives us such bounds for Optimization Problem 1.
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Proof (Lemma 3). When (ŵ, v̂) is a solution of optimization problem (1), then

G(ŵ, v̂, S) ≤ G(0,0, S) ≤ R

This implies that the optimal solution necessarily satisfies the following condi-
tion: λ ‖v‖1 + µ ‖w‖2 ≤ R. As far as ‖v‖1 ≥ ‖v‖2 we have that in order to be
an optimal solution v̂ should satisfy following constraint: ‖v‖2 ≤

R
λ . For ŵ we

obtain straightforward necessary condition, that ‖w‖22 ≤
R
µ which implies the

claim of Lemma 3.
ut

Lemma 3 implies that the norms of the vectors v and w of a solution of

Optimization Problem 1 necessary have to lie within balls with radius W :=
√

R
µ

for w and of radius V := R
λ for v, centered in the origin.

4.4 Proof of the Huber-Norm Risk Bounds

We are now equipped to prove Theorem 1.

Proof (Theorem 1). Lemma 2 gives us a bound on the Rademacher complexity of
the functional class of Equation 12, and Lemma 3 gives us necessary constraints
on the norms W and V . Inserting both into Inequality 14, we obtain Theorem 1.

ut

Proof (Proposition 1). Lemma 1 gives us a data-dependent bound on the em-
pirical Rademacher complexity of the functional class of Equation 12. Adapting
Inequality (3.14) from theorem 3.1 in Mohri et al. [16] for our needs, we have
with probability at least 1− δ

2 :

Rn(F) ≤ R̂S(F) +R

√
log( 2

δ )

2n
. (23)

Using the union bound for Inequality 14 (with δ
2 instead of δ and constant R

from Theorem 1) and Inequality 23, we get with probability 1− δ:

L(f) ≤ L̂n(f) + 2LR̂S(F) + 2LR

√
log( 2

δ )

2n
+R

√
log( 2

δ )

2n
. (24)

Together with Lemma 1 this yields the claim of Proposition 1.
ut

4.5 Corollaries

In practice, we will be interested in obtaining upper bounds for concrete loss
functions such as the hinge loss `(t, y) = max(0, 1− yt) or logistic loss `(y, t) =
log(1 + exp(−yt)) in case of two-class classification problems. Since these loss
functions are 1-Lipschitz [19], Theorem 1 produces therefore following corollaries.
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Corollary 1. For Optimization Problem 1 under the assumptions of Theorem 1
with loss-function `(y, t) = max(0, 1 − yt), t ∈ R, y ∈ {−1, 1} one obtains that,
with probability at least 1− δ for all f ∈ F :

L(f) ≤ L̂n(f) + 2

√
2(W 2 + V 2)

n
Rx +B

√
log δ−1

2n
(25)

where W =
√

1
µ , V = 1

λ , B = 1 +
√

2(W 2 + V 2)Rx.

Corollary 2. For Optimization Problem 1 under the assumptions of Theorem 1
with loss-function `(y, t) = log(1+exp(−yt)), t ∈ R, y ∈ {−1, 1} one obtains that
with probability at least 1− δ for all f ∈ F :

L(f) ≤ L̂n(f) + 2

√
2(W 2 + V 2)

n
Rx +Bl

√
log δ−1

2n
(26)

where W =
√

log 2
µ , V = log 2

λ , Bl :=
exp(Rx

√
2(W 2+V 2))√

exp(Rx

√
2(W 2+V 2))+1

.

Proof. For the hinge loss, under the conditions of Theorem 1, we have that for
any x ∈ Rd, s.t, ‖x‖2 ≤ Rx the loss is bounded by 1+|(w+v)>x|, which is upper-

bounded by 1 +
√

2(W 2 + V 2)Rx as the combination of bounds on ‖w + v‖2
and ‖x‖2. So, |`(t, y)| ≤ B := 1 +

√
2(W 2 + V 2)Rx. Then the conclusion follows

by applying Theorem 1. The proof for the logistic loss is analogous.
ut

4.6 Discussion of Results

We will now compare the generalization performance of the developed Huber-
norm regularizer with the performance of known regularizers.

Comparison to `1 and `2-Norm Regularization. The optimization prob-
lems of the `2-norm and `1-norm empirical risk minimization are

ŵ = arg min
w

µ ‖w‖22 +
1

n

n∑
i=1

`(yi,w
Txi) and (27)

v̂ = arg min
v

λ||v||1 +
1

n

n∑
i=1

`(yi,v
Txi), (28)

respectively. Theoretical upper bounds on the statistical risk for both Equa-
tions 27 and 28 result from Mohri [16] for the Rademacher complexity of linear
models. In these cases, the upper bound on the Rademacher complexity is also

of the order of
√

1
n and depends as well on the bounds on norms of the vectors

W,V (for each case separately) and on the bounds on the data.
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Comparison to Elastic Net. The optimization problem of the empirical risk
minimization with elastic-net regularizer is

ŵ = arg min
w

λ||w||1 + µ||w||22 +
1

n

∑n

i=1
`(yi,w

>xi) (29)

with `(y, 0) = 1 [26]. From a similar argumentation as in Theorem 1 [11, 16] one
can infer that upper bounds on the Rademacher complexity for this procedure

will also be of order O(
√

W 2R2
x

n ), where now W =
√

1
λ+µ and Rx as before.

Oracle Inequality. We will relate the generalization performance of the model
to the performance of the best possible model in that class—which is unknown
in practice—using an oracle-type inequality [4, 12]. As a corollary of Theorem 1,
we can obtain an oracle-type inequality in high probability for F :

G(ŵ, v̂, S) ≤ arg min(w,v)G(w,v, S) + 2∆,

where ∆ is the parameter that defines the complexity of (ŵ, v̂) ∈ F and is given
explicitly in the following Proposition 2 that follows from Theorem 1.

Proposition 2 Let all conditions of Theorem 1 hold, let (ŵ, v̂) =
arg minw,vG(w,v, S), and let W , V , Rx, and R be defined in Theorem 1. Then
with probability at least 1− δ:

G(ŵ, v̂, S)− arg min
w,v

G(w,v, S) ≤ 2L
√

2(W 2 + V 2)

n
Rx +R

√
log δ−1

2n
. (30)

Tightness Comparison. Comparing the order of our upper risk bound with
classical results for empirical risk minimization problems [1], [5] one can see that

our bound is tight, and of order
√

1
n .

5 Experiments

This section compares logistic regression with Huber-norm regularization to lo-
gistic regression with `1, with `2, and with elastic-net regularization.

5.1 Experimental Setting

We conduct experiments on benchmark problems from the UCI repository [15].
In order to avoid a possible selection bias, we select the 31 first (in alphabetical
order) classification problems that use matrix data format. We skip trivial prob-
lems for which all models achieve perfect accuracy. We transform categorical
features into binary values using one-hot coding. For multi-class problems, we
removed classes that have fewer instances than the number of cross-validation
folds. All features are centered and scaled to unit variance. Missing values are

13



Table 1. Accuracies and standard errors for UCI data sets

Data Set `1 regularization Elastic-net reg. `2 reg. Huber reg.

abalone 0.236± 0.008 0.236± 0.008 0.238± 0.015 0.262 ± 0.016∗
arrhythmia 0.687± 0.044 0.683± 0.049 0.634± 0.053 0.722 ± 0.033∗
audiology 0.576± 0.071 0.688± 0.045 0.738± 0.044 0.748 ± 0.055

balance-scale 0.907± 0.016 0.910± 0.015 0.910± 0.015 0.957 ± 0.019∗
bank 0.899± 0.001 0.899± 0.000 0.899± 0.000 0.901 ± 0.001∗
banknote 0.977± 0.011 0.976± 0.011 0.977± 0.011 0.991 ± 0.004

blood 0.770± 0.010 0.769± 0.010 0.771± 0.013 0.774 ± 0.012

breast-canc 0.689± 0.029 0.692± 0.039 0.696± 0.052 0.710 ± 0.065

breast-canc-wisc 0.963± 0.017 0.970± 0.009 0.953± 0.013 0.973 ± 0.012

breast-canc-wisc-dia 0.952± 0.032 0.952± 0.031 0.959± 0.019 0.977 ± 0.017

breast-tissue 0.879± 0.083 0.878± 0.060 0.878± 0.060 0.907 ± 0.044

car 0.841± 0.012 0.842± 0.011 0.841± 0.010 0.896 ± 0.005∗
climate-model 0.915± 0.004 0.915± 0.004 0.915± 0.004 0.955 ± 0.018∗
congress-voting 0.956 ± 0.029 0.956± 0.029 0.954± 0.025 0.954± 0.032

conn-sonar 0.746± 0.050 0.760± 0.071 0.736± 0.036 0.770 ± 0.036

contraceptive 0.506± 0.041 0.505± 0.041 0.508± 0.042 0.512 ± 0.035

credit-approval 0.851± 0.012 0.855± 0.018 0.859± 0.015 0.862 ± 0.009

cylinder-bands 0.746± 0.014 0.780± 0.020 0.802 ± 0.025 0.798± 0.016

dermatology 0.975 ± 0.027 0.965± 0.031 0.970± 0.025 0.970± 0.026

echocardiogram 0.757± 0.058 0.770± 0.075 0.784± 0.119 0.797 ± 0.106

ecloi 0.840± 0.034 0.840± 0.034 0.837± 0.032 0.871 ± 0.070

first-order 0.822± 0.001 0.822 ± 0.001 0.822± 0.002 0.821± 0.001

flags 0.675± 0.046 0.691 ± 0.029 0.659± 0.032 0.670± 0.022

glass 0.588± 0.042 0.583± 0.033 0.592± 0.056 0.603 ± 0.052

haberman-survival 0.735 ± 0.005 0.726± 0.019 0.684± 0.114 0.709± 0.038

hepatitis 0.800± 0.075 0.806± 0.067 0.806± 0.077 0.815 ± 0.111

horse-colic 0.831± 0.025 0.848 ± 0.041 0.826± 0.025 0.845± 0.024

image-segmentation 0.829± 0.010 0.833± 0.011 0.846± 0.007 0.865 ± 0.127

ionosphere 0.880 ± 0.034 0.866± 0.012 0.878± 0.038 0.878± 0.042

iris 0.840± 0.060 0.833± 0.047 0.833± 0.071 0.960 ± 0.015∗
leaf 0.644± 0.048 0.665± 0.065 0.675± 0.036 0.834 ± 0.036∗

filled in using mean imputation for continuous values and are represented as a
separate one-hot coded attribute for categorical values.

We run nested stratified cross validation with an outer loop of five folds.
Regularization parameters [λ, µ] are tuned by an inner loop of three-fold cross
validation on the training portion over the grid of [10−5, ..., 103]× [10−3, ..., 104].

5.2 Results

Table 1 shows the accuracies of different regularizers. For each problem the
highest empirical accuracy is typeset in bold face; asterisks mark models that
are significantly better than the best of the other three models, based on a
paired t test with p < 0.05. logistic regression with Huber-norm regularization
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achieves the highest empirical accuracy for 23 out of 31 problems; its accuracy
is significantly higher than the accuracy of any other model for 8 problems. No
reference methods outperform Huber-norm regularization significantly.

The UCI repository reflects a certain distribution P (S) over data sets. We
state the null hypothesis A that the probability of Huber-norm regularization
outperforming all three reference methods on a randomly drawn problem under
P (S) does not exceed 0.5, and the null hypothesis B that the probability of
Huber-norm regularization outperforming all three reference methods on a ran-
domly drawn problem under P (S) is below 0.5. We count each cross-validation
fold of each UCI data set as a single observation of a binary random variable and
determine the binomial likelihood of observing the outcomes which are reflected
in Table 1. Logistic regression with Huber-norm regularization achieves a higher
empirical accuracy than all three baselines in 86 out of 155 cross-validation folds,
and an equally high accuracy as the best baseline in an additional 24 cases. We
can therefore reject the null hypothesis A at p = 0.09 and null hypothesis B
even at p < 0.001. We conclude that for the distribution of UCI problems, the
Huber-norm regularization is the best-performing regularizer among the `1, `2,
elastic-net and Huber regularization.

6 Conclusions

We proposed a new way of regularizing linear prediction models based on a com-
bination of dense and sparse weight vectors. In more detail, we employ a linear
weight vector that is the sum of two terms, w+v, where w is `2 regularized and
v is `1 regularized. This results in an effective Huber-norm regularizer for w+v,
which is very different from an elastic net. Starting with theoretical considera-
tions, we first derived bounds on the statistical risk based on the framework of
Rademacher complexities. In our subsequent experimental study, our algorithm
showed higher predictive accuracies on a majority of UCI data sets, where we
compared against `1, `2, and elastic-net regularization. In future work, we would
like to study extensions to non-linear kernel functions and multiple kernels [9].
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