
Mobile Robotic Painting of Texture

Majed El Helou1, Stephan Mandt2, Andreas Krause3 and Paul Beardsley4

Abstract— Robotic painting is well-established in controlled
factory environments, but there is now potential for mobile
robots to do functional painting tasks around the everyday
world. An obvious first target for such robots is painting a
uniform single color. A step further is the painting of textured
images. Texture involves a varying appearance, and requires
that paint is delivered accurately onto the physical surface
to produce the desired effect. Robotic painting of texture is
relevant for architecture and in themed environments.

A key challenge for robotic painting of texture is to take a
desired image as input, and to generate the paint commands to
as closely as possible create the desired appearance, according
to the robotic capabilities. This paper describes a deep learning
approach to take an input ink map of a desired texture, and
infer robotic paint commands to produce that texture.

We analyze the trade-offs between quality of reconstructed
appearance and ease of execution. Our method is general
for different kinds of robotic paint delivery systems, but
the emphasis here is on spray painting. More generally, the
framework can be viewed as an approach for solving a specific
class of inverse imaging problems.

I. INTRODUCTION

The motivation for this work is robotic painting and
specifically (a) painting of large-scale environments with a
mobile robot, (b) painting of texture, not a single uniform
color. Example uses would be in architecture to provide a
painted textured finish on surfaces, or in themed environ-
ments that use painting to give man-made materials a natural
appearance. Furthermore, the full goal is to paint on 3D
objects, but this work focuses on 2D surfaces.

A prior assumption is the availability of a mobile robotic
painting system, and the recent development of systems such
as a spray painting quadrotor [1] is inspirational. However,
the capabilities of such a system are limited to delivering
paint on a surface at an accurate location. This still leaves
the significant challenge of how to define the trajectory and
corresponding painting commands of the robot, to produce
a desired texture.

One approach would be telerobotics - a painter works via
a VR/AR interface, in which the target surface is visible, to
remotely control a mobile painting robot. An alternative is
to create an algorithm which takes an image/graphic of a
desired texture, plus a specification of the capabilities of the
robotic painting system, and automatically generates a robot

1Majed El Helou is a PhD candidate in the School of Computer and
Communication Sciences, EPFL. The work was done during an internship
at Disney Research Zurich. majed.elhelou@epfl.ch

2 Stephan Mandt is an Assistant Professor of Computer Science at the
University of California, Irvine.

3 Andreas Krause is a Professor of Computer Science at ETH Zurich.
4 Paul Beardsley was a Principal Research Scientist at Disney Research

Zurich at the time of this work.

(a) Target ink thickness map (b) Output MSE=0.66 SSIM=0.63

(c) Target ink thickness map (d) Output MSE=0.67 SSIM=0.48

Fig. 1. Test results of the setup presented in Section V-C for two rock
textures. On the left are images that show target intensity / paint thickness,
on the right are the reconstructed images realized with feasible spray
patterns. The proposed approach allows for a trade-off between the painting
quality and efficiency measures like the needed execution time.

trajectory and painting commands to produce that desired
texture as accurately as possible.

This paper is concerned with the algorithmic approach,
and the approach is based on deep learning. The need for
a large corpus of training data of human painter activity
is circumvented by basing the approach on an autoencoder,
requiring only a training set of images of the desired texture.
The autoencoder’s decoder learns to reconstruct a desired
texture while being constrained by the painting capabilities
of the robotic system. The painting commands can then be
inferred for an input texture ink map by a pass through the
encoder. Desired properties of the robot’s traversal path are
also favored during the training. In this paper, we assume that
the robot will utilise a grid-like trajectory, and we determine
painting commands that both reproduce the input ink map
and are efficient to execute. Illustrative results are shown for
rock-type texture in Fig. 1.

The focus of the paper is specifically spray painting. A
typical spray nozzle produces a spray cone, resulting in
a circular or elliptical spray pattern on the surface. The
distribution of deposited paint within the spray pattern is
Gaussian [2], [3]. The proposed method however applies to
any painting mechanism that can be approximated through a
convolution, including a brush, dabbing, rolling, or stippling.

The algorithm operates on single-intensity images. How-
ever, it extends to color images by decomposing into single
color layers [4] and applying the algorithm per layer.



II. RELATED WORK

Industrial robotic painting is historically among the first
successful applications of robotics. Aesthetic robotic painting
has appeared more recently. In both areas, the focus has been
on smaller-scale surfaces and fixed robot arms, in contrast
to the work here on painting large-scale environments with
a mobile robot.

Paint application methods include stippling [5] in which
the authors define a model for ink dots and provide a
heuristic for approximating an image with these dots. Paint
brushing is investigated in [6], using a regular brush and
constant feedback from a camera, and using simulation-based
predictions to add the best stroke at every time step. Other
approaches present algorithms for watercolour [7] or graffiti
stroke placement [8], with a visual control refinement stage
in [9]. We focus in contrast on spray painting, particularly
on machine-learned painting.

Computer-aided human spray painting includes [4], a
painter assistant that automatically blocks the spray when
inappropriate painting is going to take place for a target
appearance, based on a live simulation and the target texture.
In [10], the user is guided by a simulator to areas that
still need painting, using a particle replacement policy for
the simulation. A virtual environment for graffiti painting is
described in [11], driven by a dummy nozzle held by a user.

Robotic spray painting of images or texture rather than
uniform color paint is a recent development. An automated
approach is presented in [3] - a robotic arm moves a spray
can in front of a mural. The algorithm relies on a feedback
mechanism where the current painting is fed back to the
system after every spray to compute the next position. The
approach is limited in scalability due to its slow speed as
feedback and optimization steps are carried out after every
applied spray pattern.

Spray models are essential when working with spray
painting, to simulate the process and outcome of specific
operations [10], [2], [3], [4]. An airbrush simulation is
described in [12], [2]. The spray model in [12] is calibrated
experimentally, taking into account factors such as air to
paint ratio, viscosity, and distance of the airbrush from the
work. A particle simulation model for spraying is presented
in [13]. In [14], the authors experimentally create a database
to learn the spray model for a nozzle, to create a virtual
environment where ship painters can be trained. For such
industrial applications, it is the paint thickness that is of
most importance. A statistical analysis is carried out in [15]
to learn the effects of key parameters - shaping air and paint
flow - on the dry film thickness.

Learning applied to painting. Learning to compute a
complete paint mission is a more scalable approach than
methods that need iterative visual feedback to drive sim-
ulation and optimization steps after each spray step. For
instance, in the area of style transfer, Johnson et al. propose
a feed-forward strategy that replaces constant optimization
to reach real-time speed [16]. However, as spray paint
simulations are not readily differentiable, they cannot be

easily integrated into a generic machine learning setup. A
generative model, confined to using four strings to move a
drawing pen in two dimensions, is presented in [17]. The
authors add noise to the motor commands to generate more
training data, until the distribution covers the MNIST dataset.
DeepMind address the non-differentiability issue with a
solution relying on reinforcement learning [18]. It treats the
paint simulator as a black box, building on earlier work [19]
that they scale up to real-world datasets. A discriminator
assesses the realism of the simulated painting, and serves
as the reward system. Their results demonstrate the drawing
of small binary-colored digits or symbols with a controlled
pen. However, generalizing to images is of rather low visual
quality, and the training is expensive. It is in the order of 200
million frames, and must be repeated for every new paint
delivery system. In contrast, our method has more tractable
training times.

Paint mixing can be simulated using the long-established
Kubelka-Munk (K-M) theory [20], [21], [22], [13], [23]. The
task of painting colored textures reduces to painting a set of
single-ink layers of texture.

III. LEARNING TO PAINT

A. Problem Setup

Our main objective is to enable painting large outdoor
surfaces, with any target texture, no human intervention or
feedback mechanisms, such that the automated painting is
fast and scalable. The algorithm is suitable for use with
a mobile robotic spray painting system equipped with a
controllable spray nozzle [1], as spray painting is the most
scalable approach to large, potentially 3D, structures.

Given a target digital RGB image to be painted and a set of
inks made available to the painting system, an external paint-
mixing simulator transforms the RGB colors into a sequence
of ink thickness layers [13], [23]. We thus assume the input
to our system is a sequence of layers of ink thickness to
be achieved by the mobile robotic painting system. A given
layer is a matrix of same size as the image, and contains the
desired ink thicknesses in space for a specific ink.

The desired output of our system is a sequence of loca-
tions, per ink layer, of where the robot needs to be located
and the corresponding pattern to be sprayed at every location.
A pattern is the shape of the spray model but also its
thickness. The former is determined by the nozzle orientation
relative to the surface, the latter by the spray duration,
pressure and robot speed. We assume the ink deposition
follows a Gaussian distribution [2], [3], [24].

B. Painting as a Machine Learning Problem

Learning to paint presents multiple scalability advantages
relative to optimization with simulators and constant feed-
back mechanisms. Recent research efforts have been directed
at using neural networks to replace optimizations in certain
applications [16], [25], or more general cases [26]. However,
learning to paint requires a large dataset of painter-recorded
actions (spraying location, distance to the surface, duration
and pressure, nozzle orientation relative to the surface)



combined with their respective outcomes on the sprayed
surface. Such data are expensive and time consuming both
to set up and to generate, even if carried out in virtual reality
simulators. The quality and generalization of the results are
also directly impacted by the quality of the data.

An alternative problem formulation relies on a generative
model with a simulator that executes a latent set of com-
mands to generate an image. The machine learning task is
then to invert the simulation process: given an image, find the
underlying commands that the simulator executed. However,
with simulators being non-differentiable, training such a
generative model is challenging. Reinforcement learning is
highly costly to train, and must be retrained for different
black-box simulators. Gradient estimation techniques such
as [27] are only approximative and suffer from high vari-
ance [28], [29]. This paper proposes a different strategy
based on autoencoders [30], [31], [32]. The bottleneck of the
autoencoder has the interpretation of the command space,
and a carefully designed decoder plays the role of the
simulator. The encoder infers a set of painting commands
given a target paint texture layer. As detailed in the next
section, this architecture is fully differentiable and works
well with limited amounts of texture images serving as
training data.

C. Differentiable Simulator

As follows, we describe how we can design a differentiable
simulator that mimics the behavior of the robotic system
under consideration. A spray painting simulator essentially
creates Gaussian paint patterns with magnitude proportional
to the duration of spray, and covariance matrices dictated
by the orientation of the nozzle. We consider a finite
set of N spray patterns that the paint system can create.
Each such pattern corresponds to a Gaussian with a two-
dimensional covariance structure corresponding to a certain
nozzle orientation and distance relative to the painted surface.
We furthermore discretize the space of possible spraying
locations to a grid G. The learning problem then amounts to
estimating which of the N spraying patterns are to be applied
at which locations in order to reconstruct a given image,
and with what magnitudes. Simulating the spray painting,
under the constraint of only using the N spray patterns,
can now be written as a finite sum of convolutions. Each
location in G holds an activation (impulse) for each of
the N spray patterns; these impulses are constrained to the
interval [0, 1]. If a spray pattern is not to be applied at the
given location, its corresponding impulse is 0, otherwise, the
impulse magnitude determines that of the spray. That is, the
image becomes a mixture of Gaussians with pre-specified
covariance structures.

The fact that the simulator assumes the form of convo-
lutions with pre-specified kernels allows us to propagate
gradients through the autoencoder and train it end to end.
We use a fully convolutional neural network (CNN) archi-
tecture [33]. The implementation details are all grouped in
Section IV. The CNN acts as an autoencoder, mapping the
input image through a bottleneck layer to an output image.

The decoder of the CNN emulates the spray paint simulator
(Fig. 2) as explained above; its parameters are fixed and not
learnable (the N spray patterns). The last convolution tensor
is thus made up of N matrices, each holding a discretized
two-variate Gaussian. The previous layer’s outputs are the
impulses or commands that drive the spray painting.

The discretization we make is two-fold. First, we discretize
the possible spraying locations of the painting robot to
restrict them to the grid G. This discretization is not costly, as
the resolution of G can be as high as the input image. Second,
we discretize the space of possible spray patterns. This
discretization restricts the capabilities of the spraying system.
However, it is readily possible to increase the sampling
resolution by increasing N with no other changes needed, to
leverage the full capabilities of the system. In practice, we
try to restrict N to being as small as possible while obtaining
acceptable performance. This speeds up the paint process as
the robot does not need to repetitively re-orient its nozzle.

D. Controlling Commands

During the painting process, the robot moves over every
location in the grid G holding a non-zero impulse and applies
the corresponding spray pattern. Therefore, the path traversed
and the spray time required by the robot naturally increase
with the number of non-zero impulses.

We define unit spray patterns, each being a magnitude-
scaled version of the corresponding Gaussian spray pattern,
such that they correspond to the maximum duration t we
allow for spraying a certain location. A zero impulse indi-
cates the absence of spray, an impulse of 1 indicates the unit
spray of duration t, and all values v in between are sprays
with duration v · t. A linear relation between ink thickness
and time is assumed [2]. Time spent at a certain location
can be translated to robot speed (Fig. 12 in [3]) or nozzle
airflow around that location [10]. To minimize the overall
duration of the spray operation, we regularize the tensor of
spray commands (Section III-E). A further reduction in the
number of commands is carried out by changing the grid
resolution. Instead of assigning a command to every entry
in G, we effectively downsample the grid, setting to 0 a
percentage of the commands. For instance, a downsampling
by 2 causes 75% of commands to be set to 0.

E. Regularization

Learning a set of commands for spray painting a target
image is an ill-posed problem when the model is assumed
to be a two-variate Gaussian. Within a certain error mar-
gin, multiple different combinations of space-shifted and
magnitude-scaled Gaussians can lead to the same image.
This makes the inverse problem of learning the spraying
command locations and choices of spray patterns ill-posed.
To reduce the negative effect of the ill-posed setup to
the learning process, we assign different weights to the
regularization of the different spray patterns. By adding a
pattern-dependent weight to the command regularization, we
break the equivalence between the different combinations
that lead to a roughly similar output. This strategy can also



Affine
Mapping

Sigmoid
Activation Wide

ResNet

Average
Pooling

Upsample
by Zeros 

2D
Convolution 

ReLU
Activation 

...

Skip Connection

...

Kernel
Scaling 

Spray
Pattern
Conv 

Output
Image 

Input
Image 

Extracted
Spray 

Commands 

Encoder Decoder

Fig. 2. Architecture of the constrained autoencoder convolutional neural network. The encoder is made up of a wide ResNet architecture containing a
sequence of res-blocks [34]. The blocks are constituted of 2D convolutions and ReLU [35] activation layers with skip connections. The output is then
passed through an affine mapping to shift the distribution of activation values similar to a batch normalization [36]. This affine mapping allows for a varied
output in the range [0, 1] after passing through the sigmoid activation [37]. The average pooling followed by upsampling with zero filling is only used
when sparsity is to be imposed. The decoder scales the spray pattern magnitudes and applies our version of a spray simulator. The largest magnitude can
be mapped in the physical world to the longest spray duration before droplets are formed.

allow us, for instance, to add more regularization weight to
small spray patterns, thus encouraging the use of large ones.
Another type of regularization we leverage is total variation
(TV) [38], [39], regularization on commands to favor smooth
changes [40]. Having smoothly-varying spray intensity is
important for energy efficiency and execution practicality.

IV. IMPLEMENTATION

A. Neural Network Architecture

The CNN architecture we implement is fully convolu-
tional. It is an autoencoder network with a constrained
decoder. The constraint is that the decoder emulates a spray
paint simulator that is reproducible by the given mobile
robotic system. The autoencoder CNN follows the residual
networks approach [41] but with a shallow and wide archi-
tecture [42] portrayed in Fig 2. In total, 51 k parameters
are trainable in the network. The encoder outputs are the
spraying commands since the decoder is forced to be a non-
trainable layer that emulates spray painting.

B. Implementation Details

Dataset: We use a dataset of rockface images, with 894
images used for training and 141 used for testing. Training
and testing sets are mutually exclusive. The image resolu-
tions are either 1024 × 683 or 512 × 768 pixels, and are
all normalized to the same mean intensity of 10. We take
the luminance of every image as the guiding map for target
ink thickness. Color intensity and ink thickness are not fully
linearly related due to saturation. When a set of inks is
available, a more accurate mapping can be created from
color to ink thickness layers, as described in the color mixing
literature. This mapping is outside the scope of this paper. We
thus aim to solve the problem of painting a single-ink layer
of texture which we choose to be the image luminance. The
images are divided into 85×85 patches that are created with
50% overlap between each other as an image is traversed,
and a batch size of 32 is used in the training process. The
full test images can be fed-forward into the network, given

large enough GPUs, as the network architecture is fully
convolutional by design.

Code: The CNN and all functions used in this project are
in Python 3.6.5, with Keras [43] for the CNN architecture,
using tensorflow as backend [44]. We use CUDA 9.0.176,
cuDNN 7.2 [45] and a GTX 1080 Ti GPU for training
our CNN. We use the Adam optimizer [46] with a starting
learning rate of 1×10−3 (default β, ε). Results shown in this
paper are obtained with networks trained for only 10 epochs,
unless stated otherwise. As over-fitting is not witnessed in
our setup, we do not use any dropout or weight decay
during the training. The loss function we use is a weighted
sum between reconstruction mean-squared error (MSE), a
weighted `2 regularizer across different spray command
maps, and spatial TV regularization on the command maps.

Running times: A single epoch on our entire dataset of
345, 216 patches trains in approximately 850 s. So a single
network is trained in less than two and a half hours for the
10 epochs and full training dataset. The feed-forward time
is of 7ms per patch and 3 s per test image on average.

V. EXPERIMENTAL RESULTS

The proposed approach is evaluated on the test dataset as
described in Section IV. Aside from obtaining acceptable
reconstruction quality, physical feasibility is an important
criteria. For the commands to be more easily executed by the
robotic system, we study both smoothly-varying commands
and sparse commands. Commands that vary smoothly are
more energy-efficient to execute as the robot’s state changes
gradually over time. Command sparsity, on the other hand,
shortens the path to be traversed by reducing the points that
need to be covered. All experiments are conducted using a
set of three spray patterns: one symmetric Gaussian, and two
ellipses skewed in the vertical and horizontal directions. The
Gaussians have a variance of 3 pixels for the symmetric one,
and variances of 2 and 4 in each direction for the ellipses. We
also test with different diameter scales of spray patterns. A
spray scale of value [1, 3, 5] means the spray variances were



−6 −4 −2 0 2 4 6
Total variation weight in training loss (ln scale)

0.6

0.8

1.0

1.2

M
S
E

MSE (TV2)

MSE (TV1)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

S
S

IM

SSIM (TV2)

SSIM (TV1)

(a) MSE and SSIM

−6 −4 −2 0 2 4 6
Total variation weight in training loss (ln scale)

0.00

0.05

0.10

0.15

0.20

T
V

 n
o
rm

TV (TV2)

TV (TV1)

Vertical TV (TV2)

Vertical TV (TV1)

Horizontal TV (TV2)

Horizontal TV (TV1)

(b) Commands total variation

Fig. 3. Average test results with spray scale 1, evaluated with MSE and
SSIM. The training is carried out with different losses: TV1 for a training
loss with a vertical TV component, and TV2 for a training loss with a 2D
TV component. Every data point is a separately-trained network. The trade-
off between quality (a) and smoothness (b) is clear. Note that one-directional
smoothness can be controlled through the training loss weight.

all multiplied by the corresponding value before the train-
ing. The smallest and largest scales correspond to physical
spray patterns with roughly 10.4 cm and 23.2 cm diameters
respectively, measured at three standard deviations.

Different reconstruction results and the corresponding
commands are shown in Fig. 5. Reconstruction quality
generally decreases with increasing smoothness or increasing
sparsity. These trade-offs and quantitative assessments are
presented in the following two sections.

A. Command Smoothness Trade-off

This section analyzes the trade-off between image recon-
struction quality and command smoothness. The experiments
are conducted for a set of different total variation regular-
ization weights. The weights correspond to the weight of
the total variation term in the training loss function. The
total variation loss term for the network training is computed
either vertically (TV1) or in two directions (TV2) and results
are shown for each of these two training losses, and for every
chosen weight. The Structural SIMilarity (SSIM) index [47]
is often used in super-resolution assessment for the conser-

vation of structural content rather than just pixel error [48],
[49] and is used in assessing images when photo-realism is
desirable [50]. As the network optimizes for MSE, we also
show SSIM evaluation as an additional metric unknown to
the network.

The trade-off is clear; as the variation in commands
decreases with increasing regularization weight (Fig. 3 b), the
reconstruction quality decreases (Fig. 3 a). The total variation
in commands in Fig. 3 b is computed vertically, horizontally
and an average of the two (for both TV1 and TV2 loss
networks). When the training loss includes a two-directional
TV term, the command results are smoother horizontally
than vertically. This is due to the nature of our dataset
composed of rock textures with many horizontal lines. We
can control the variation in the direction that we want to
traverse (Section V-C). As Fig. 3 b shows, we can make
the commands smoother vertically by using only the vertical
TV in the training loss (TV1). With small weights up to e−2,
the variation is largest for both trained networks vertically.
But starting from a weight of 1, the variation distribution
flips and becomes smaller vertically than horizontally for the
network trained to minimize vertical variation (TV1). The
horizontal variation is not affected by the vertical variation
loss before a weight of e2, beyond which, the command
values converge to the average vertical value, which does not
vary a lot from column to column, thus indirectly imposing
horizontal smoothness. The one-directional smoothness is
useful for the physical execution detailed in Section V-C. For
instance, the quadrotor [1] can move more easily in straight
lines vertically than horizontally, thus the need for vertically-
directed smoothness. This is because it is equipped with the
spray nozzle, and moving horizontally requires a movement
in the body of the quadrotor that needs more compensation
for the attached nozzle. This issue is less severe for vertical
displacement. We however obtain similar effects when the
smoothness is imposed horizontally.

B. Command Sparsity Trade-off

We also analyze the effect of sparsity in commands on
the reconstruction quality. Fig. 4 shows MSE and SSIM
results for different spray scales as a function of sparsity.
Sparsity is defined by S, such that only one out of every
S2 commands is allowed to be non-zero. The reconstruction
quality deteriorates quickly as sparsity increases for the small
spray patterns (scale 1). This behavior is expected as it gets
hard to spread the ink across the entire surface with a small
spray pattern and high sparsity in commands. The problem is
less severe with larger sprays. It is thus favorable to use larger
patterns when we impose increasingly sparse commands.

C. Execution Time

The scale and resolution of the images in our dataset
have roughly a 1 px to 1 cm correspondence. An image of
width 1000 px corresponds to a 10m spray surface width.
The quadrotor [1] can reach speeds of 2m/s but normally
operates at only 30 cm/s when spray painting. The spray
nozzle is mechanically controlled with a time resolution of



1.0 1.5 2.0 2.5 3.0 3.5 4.0

Sparsity degree S

0.6

0.8

1.0

1.2

1.4

1.6
M

S
E

MSE scale 1

MSE scale 3

MSE scale 5

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

S
S
IM

SSIM scale 1

SSIM scale 3

SSIM scale 5

Fig. 4. Average reconstruction results as a function of increasing sparsity
S for different spray pattern diameter scales. Only one out of every S2

commands is non-zero.

12ms and can thus easily change its spray flow at a spacial
resolution of 1 cm when the quadrotor is moving at 30 cm/s.

Giving a command at every pixel in the image corresponds
to an updated paint thickness every 1 cm. Traversing the
surface vertically takes the quadrotor 20 s, with an added
estimate of 2 s for stopping and positioning at the next
column. Therefore, conducting the painting of a 1000× 600
pixels (width × height) image on a 60m2 area with a
command for every pixel (i.e. every cm) requires (20 +
2) ∗ 1000 ∗ 3/3600 = 18.33 h if we traverse every single
column. The factor of 3 is because we are using three
different spray patterns to create the image. They can be
created by rotating the nozzle at every location, or by simply
traversing the surface an extra time with an adjusted nozzle
orientation. We focus on creating commands that are sparse
horizontally to reduce the number of vertical traversals the
quadrotor needs to carry out. Execution would be faster with
horizontal traversals because the image is wide and there
is a repositioning overhead. However, the nozzle-equipped
quadrotor carries out vertical traversals in straighter lines
than horizontally due to the needed compensation to account
for the attached nozzle when tilting the quadrotor’s body.

Based on the trade-off analysis, we choose to train a ver-
sion of our network with a TV weight of 1 in both directions.
We use the spray patterns of scale 5 and only allow one out
of every 6 rows to be non-zero. Two reconstructed images
with this setup are given in Fig. 1. Image (a) maps to 60m2

of painted surface and can be sprayed in about 3.05 h (6x
speed-up) by the quadrotor, that is 3.05min/m2 compared
with 70.1min/m2 for the only other automated approach [3].
Average MSE over the test set is 1.32, average SSIM 0.58,
and vertical TV 0.06, after 75 training epochs. We also
evaluate our solution on the Pandora saliency dataset [51],
while training only on the rockface dataset and obtain an
MSE of 2.44 and SSIM of 0.62. SSIM is even slightly better
than on the rockface dataset, showing the generalization of
our solution. MSE is however worse, which is expected
due to the details present in the paintings. One of these
reconstruction results is illustrated in the submission video.

(a) No TV loss in training (b) Command map for (a)

(c) TV training weight 10 (d) Command map for (c)

(e) TV training weight 200 (f) Command map for (e)

Fig. 5. Spray simulated results on the left, and the corresponding command
maps (for one of the Gaussians) on the right. Results are obtained with
TV2 loss networks trained for only 10 epochs. The image is cropped from
Fig. 1 a. Command smoothness increases with little change in reconstruction
quality, but with excessively smooth commands, the results begin to degrade.
For TV1 loss networks, commands are smoother in the chosen direction
and with very large TV1 regularization weights the reconstruction begins
to show small line artifacts.

VI. DISCUSSION

The approach proposed in this paper can also be applied to
image inverse problems such as deblurring, deconvolution, or
dehazing [52], as long as their simulation is integrated in the
decoder. The main advantage of the approach is that it does
not require an application-specific dataset. Furthermore, our
autoencoder can be used for domain adaptation [53], [54].
The autoencoder acts as a style transfer operator [55], with
a difference from earlier work that the system is generating
not an image in a spray-painted style, but from specific spray
commands based on the given patterns and regularization.

VII. CONCLUSION

This paper presented a method for inferring spray paint
commands to paint a desired texture, specified as an input
image. Our approach does not require training data beyond
an easy-to-obtain unlabelled texture image dataset, and is
generalizable to any paint application method. Only a one-
time training is required for a new robotic painting system,
and painting commands can then be inferred for any image
with no further processing. We demonstrated the trade-
off between image reconstruction quality and the ease of
physical execution such that, for a specified quality of the
painted appearance, an energy- or time-efficient painting
mission can be executed.



REFERENCES

[1] Anurag Sai Vempati, Mina Kamel, Nikola Stilinovic, Qixuan Zhang,
Dorothea Reusser, Inkyu Sa, Juan Nieto, Roland Siegwart, and Paul
Beardsley, “Paintcopter: An autonomous uav for spray painting on
three-dimensional surfaces,” IEEE Robotics and Automation Letters,
vol. 3, no. 4, 2018.

[2] Lorenzo Scalera, Enrico Mazzon, Paolo Gallina, and Alessandro
Gasparetto, “Airbrush robotic painting system: Experimental validation
of a colour spray model,” in International Conference on Robotics in
Alpe-Adria Danube Region, 2017, pp. 549–556.

[3] S Seriani, A Cortellessa, S Belfio, M Sortino, G Totis, and P Gallina,
“Automatic path-planning algorithm for realistic decorative robotic
painting,” Automation in Construction, vol. 56, pp. 67–75, 2015.

[4] Roy Shilkrot, Pattie Maes, Joseph A Paradiso, and Amit Zoran, “Aug-
mented airbrush for computer aided painting (cap),” ACM Transactions
on Graphics (TOG), vol. 34, no. 2, p. 19, 2015.

[5] Brendan Galea, Ehsan Kia, Nicholas Aird, and Paul G Kry, “Stippling
with aerial robots,” in Proc. of the Joint Symposium on Computational
Aesthetics and Sketch Based Interfaces and Modeling and Non-
Photorealistic Animation and Rendering. Eurographics Association,
2016, pp. 125–134.

[6] Oliver Deussen, Thomas Lindemeier, Sören Pirk, and Mark Tautzen-
berger, “Feedback-guided stroke placement for a painting machine,”
in Proc. of the 8th Annual Symposium on Computational Aesthetics
in Graphics, Visualization, and Imaging. Eurographics Association,
2012, pp. 25–33.

[7] Lorenzo Scalera, Stefano Seriani, Alessandro Gasparetto, and Paolo
Gallina, “Watercolour robotic painting: a novel automatic system for
artistic rendering,” Journal of Intelligent & Robotic Systems, pp. 1–16,
2018.

[8] Daniel Berio, Sylvain Calinon, and Frederic Fol Leymarie, “Learning
dynamic graffiti strokes with a compliant robot,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2016,
pp. 3981–3986.

[9] Ren C Luo, Ming-Jyun Hong, and Ping-Chang Chung, “Robot artist
for colorful picture painting with visual control system,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016, pp. 2998–3003.

[10] Romain Prévost, Alec Jacobson, Wojciech Jarosz, and Olga Sorkine-
Hornung, “Large-scale painting of photographs by interactive opti-
mization,” Computers & Graphics, vol. 55, pp. 108–117, 2016.

[11] Mei Yii Lim and Ruth Aylett, “My virtual graffiti system,” in IEEE
International Conference on Multimedia and Expo (ICME), vol. 2,
2004, pp. 847–850.

[12] Jonathan Konieczny and Gary Meyer, “Airbrush simulation for artwork
and computer modeling,” in Proc. of the 7th International Symposium
on Non-Photorealistic Animation and Rendering. ACM, 2009, pp.
61–69.

[13] Jonathan Konieczny, John Heckman, Gary Meyer, Mark Manyen,
Marty Rabens, and Clement Shimizu, “Automotive spray paint simu-
lation,” in International Symposium on Visual Computing, 2008, pp.
998–1007.

[14] Ungyeon Yang, Gun A Lee, Seonhyung Shin, Sunyu Hwang, and
Wookho Son, “Virtual reality based paint spray training system,” in
Proc. of the IEEE Virtual Reality Conference (VR), 2007, pp. 289–290.

[15] KV Chidhambara, B Latha Shankar, et al., “Optimization of robotic
spray painting process parameters using taguchi method,” in IOP
Conference Series: Materials Science and Engineering, vol. 310, 2018,
p. 012108.

[16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei, “Perceptual losses
for real-time style transfer and super-resolution,” in Proc. of the IEEE
European Conference on Computer Vision (ECCV), 2016, pp. 694–
711.

[17] Vinod Nair and Geoffrey E Hinton, “Inferring motor programs from
images of handwritten digits,” in Proc. of Advances in Neural Infor-
mation Processing Systems (NIPS), 2006, pp. 515–522.

[18] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Eslami, and
Oriol Vinyals, “Synthesizing programs for images using reinforced
adversarial learning,” arXiv preprint arXiv:1804.01118, 2018.

[19] Ning Xie, Hirotaka Hachiya, and Masashi Sugiyama, “Artist agent:
A reinforcement learning approach to automatic stroke generation in
oriental ink painting,” IEICE Transactions on information and systems,
vol. 96, no. 5, pp. 1134–1144, 2013.

[20] Paul Kubelka, “New contributions to the optics of intensely light-
scattering materials. part i,” JOSA, vol. 38, no. 5, pp. 448–457, 1948.

[21] ——, “New contributions to the optics of intensely light-scattering
materials. part ii: Nonhomogeneous layers,” JOSA, vol. 44, no. 4, pp.
330–335, 1954.

[22] Chet S Haase and Gary W Meyer, “Modeling pigmented materials
for realistic image synthesis,” ACM Transactions on Graphics (TOG),
vol. 11, no. 4, pp. 305–335, 1992.

[23] William Baxter, Jeremy Wendt, and Ming C Lin, “Impasto: a realistic,
interactive model for paint,” in Proc. of the 3rd International Sympo-
sium on Non-Photorealistic Animation and Rendering. ACM, 2004,
pp. 45–148.

[24] Nijanthan Berinpanathan, Mina Kamel, Roland Siegwart, and Paul
Beardsley, “Characterizing the spray coverage of nozzles,” ETHZ
Semester Thesis: unpublished but available on request, 2018.

[25] Jun Han, Salvator Lombardo, Christopher Schroers, and Stephan
Mandt, “Deep probabilistic video compression,” arXiv preprint
arXiv:1810.02845, 2018.

[26] Joseph Marino, Yisong Yue, and Stephan Mandt, “Iterative amortized
inference,” Proc. of the International Conference on Machine Learning
(ICML), 2018.

[27] Ronald J Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” Machine learning, vol. 8,
no. 3-4, pp. 229–256, 1992.

[28] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves,
Jan Peters, and Jürgen Schmidhuber, “Policy gradients with parameter-
based exploration for control,” in International Conference on Artifi-
cial Neural Networks. Springer, 2008, pp. 387–396.

[29] Alexander Buchholz, Florian Wenzel, and Stephan Mandt, “Quasi-
monte carlo variational inference,” in Proc. of the International
Conference on Machine Learning (ICML), 2018, pp. 667–676.

[30] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning.
MIT press, 2016.

[31] Diederik P Kingma and Max Welling, “Auto-encoding variational
bayes,” arXiv preprint arXiv:1312.6114, 2013.

[32] Zhiwei Deng, Rajitha Navarathna, Peter Carr, Stephan Mandt, Yisong
Yue, Iain Matthews, and Greg Mori, “Factorized variational au-
toencoders for modeling audience reactions to movies,” in Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2577–2586.

[33] Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully convo-
lutional networks for semantic segmentation,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 3431–3440.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proc. of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 770–778.

[35] Vinod Nair and Geoffrey E Hinton, “Rectified linear units improve re-
stricted boltzmann machines,” in Proc. of the International Conference
on Machine Learning (ICML), 2010, pp. 807–814.

[36] Sergey Ioffe and Christian Szegedy, “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift,” arXiv
preprint arXiv:1502.03167, 2015.

[37] Naiyan Wang and Dit-Yan Yeung, “Learning a deep compact image
representation for visual tracking,” in Proc. of Advances in Neural
Information Processing Systems (NIPS), 2013, pp. 809–817.

[38] Curtis R Vogel and Mary E Oman, “Fast, robust total variation-based
reconstruction of noisy, blurred images,” IEEE transactions on image
processing, vol. 7, no. 6, pp. 813–824, 1998.

[39] Tony Chan, Antonio Marquina, and Pep Mulet, “High-order total
variation-based image restoration,” SIAM Journal on Scientific Com-
puting, vol. 22, no. 2, pp. 503–516, 2000.

[40] Antoni Buades, Bartomeu Coll, and J-M Morel, “A non-local al-
gorithm for image denoising,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 2, 2005, pp.
60–65.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Identity
mappings in deep residual networks,” in Proc. of the IEEE European
Conference on Computer Vision (ECCV), 2016, pp. 630–645.

[42] Sergey Zagoruyko and Nikos Komodakis, “Wide residual networks,”
arXiv preprint arXiv:1605.07146, 2016.

[43] François Chollet et al., “Keras,” 2015, software available from
https://keras.io.

[44] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew



Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[45] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer, “cudnn: Ef-
ficient primitives for deep learning,” arXiv preprint arXiv:1410.0759,
2014.

[46] Diederik P Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[47] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli,
“Image quality assessment: from error visibility to structural simi-
larity,” IEEE transactions on image processing, vol. 13, no. 4, pp.
600–612, 2004.

[48] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang,
“Image super-resolution using deep convolutional networks,” IEEE
transactions on pattern analysis and machine intelligence, vol. 38,
no. 2, pp. 295–307, 2016.

[49] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee, “Accurate image
super-resolution using very deep convolutional networks,” in Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 1646–1654.

[50] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew P Aitken, Alykhan Tejani,
Johannes Totz, Zehan Wang, et al., “Photo-realistic single image super-
resolution using a generative adversarial network.” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
vol. 2, 2017, p. 4.

[51] Corneliu Florea, Răzvan Condorovici, Constantin Vertan, Raluca But-
naru, Laura Florea, and Ruxandra Vrânceanu, “Pandora: Description
of a painting database for art movement recognition with baselines
and perspectives,” in Proc. of the IEEE European Signal Processing
Conference (EUSIPCO), 2016, pp. 918–922.

[52] Majed El Helou, Frederike Dümbgen, Radhakrishna Achanta, and
Sabine Süsstrunk, “Fourier-domain optimization for image process-
ing,” arXiv preprint arXiv:1809.04187, 2018.

[53] Amir Atapour-Abarghouei and Toby P Breckon, “Real-time monocular
depth estimation using synthetic data with domain adaptation via
image style transfer,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 18, 2018, p. 1.

[54] Vishal M Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chel-
lappa, “Visual domain adaptation: A survey of recent advances,” IEEE
signal processing magazine, vol. 32, no. 3, pp. 53–69, 2015.

[55] Jing Yongcheng, Yang Yezhou, Feng Zunlei, Ye Jingwen, Yu Yizhou,
and Mingli Song, “Neural style transfer: A review,” arXiv preprint
arXiv:1705.04058v6, 2018.


