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Abstract.  Variational inference has become one of the most widely used 
methods in latent variable modeling. In its basic form, variational inference 
employs a fully factorized variational distribution and minimizes its Kullback–
Leibler divergence to the posterior. As the minimization can only be carried 
out approximately, this approximation induces a bias. In this paper, we 
revisit perturbation theory as a powerful way of improving the variational 
approximation. Perturbation theory relies on a form of Taylor expansion 
of the log marginal likelihood, vaguely in terms of the log ratio of the true 
posterior and its variational approximation. While first order terms give the 
classical variational bound, higher-order terms yield corrections that tighten 
it. However, traditional perturbation theory does not provide a lower bound, 
making it inapt for stochastic optimization. In this paper, we derive a similar 
yet alternative way of deriving corrections to the evidence lower bound that 
resemble perturbation theory, but that result in a valid bound. We show in 
experiments on Gaussian processes and variational autoencoders that the new 
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bounds are more mass covering, and that the resulting posterior covariances 
are closer to the true posterior and lead to higher likelihoods on held-out data.

Keywords: machine learning
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1.  Introduction

Bayesian inference is the task of reasoning about random variables that can only 
be measured indirectly. Given a probabilistic model and a data set of observations, 
Bayesian inference seeks the posterior probability distribution over the remaining, 
i.e. unobserved or ‘latent’ variables. The computational bottleneck is calculating the 
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marginal likelihood, the probability of the data with latent variables being integrated 
out, which is also an important quantity for model selection. It is the objective function 
of the expectation-maximization (EM) algorithm [8], which has seen a recent resur-
gence with the popularity of variational autoencoders (VAEs) [16].

Variational inference (VI) [13, 14, 46] scales up approximate Bayesian inference to 
large data sets by framing inference as an optimization problem. VI derives and maxi-
mizes a lower bound to the log marginal likelihood, termed ‘evidence’, and uses this so-
called ‘evidence lower bound’ (ELBO) as a proxy for the true evidence. In its original 
formulation, VI was limited to a restricted class of so-called conditionally conjugate 
models [13], for which a closed-form expression for the ELBO can be derived by solv-
ing known integrals. More recently, black box variational inference (BBVI) approaches 
have become more popular [34, 37], which lift this restriction by approximating the 
gradient of the ELBO by Monte Carlo samples. BBVI also enables the optimization of 
alternative bounds that do not possess closed-form integrals. With Monte Carlo gradi-
ent estimation, the focus shifts from tractability of these integrals to the variance of 
the Monte Carlo gradient estimators, asking for bounds with low-variance gradients.

In this article, we propose a family of new lower bounds that are tighter than the 
standard ELBO while having lower variance than previous alternatives and admitting 
unbiased Monte Carlo estimation of the gradients of the bound. We derive these new 
bounds by introducing ideas from so-called variational perturbation theory into BBVI.

Variational perturbation theory provides an alternative to VI for approximating 
the evidence [29–31, 41]. It is based on a Taylor expansion of the evidence around the 
variational distribution, i.e. a parameterized approximate posterior distribution. The 
lowest order of the Taylor expansion recovers the standard ELBO, and higher order 
terms correct for the mismatch the between variational distribution and true posterior.

Variational perturbation theory based on so-called cumulant expansions [29] requires 
a fair amount of manual derivations and puts strong constraints on the tractability of 
certain integrals. A cumulant expansion also generally does not result in a lower bound, 
making it impossible to minimize the approximation error with stochastic gradient 
descent. In this article, we propose a new variant of perturbation theory that addresses 
these issues. Our proposed perturbative expansion leads to a family of lower bounds on 
the marginal likelihood that can be optimized with the same black box techniques as 
the standard ELBO. The proposed bounds L(K) are enumerated by an odd integer K, 
the order of the perturbative expansion, and are given by

L(K)(λ,V0) = e−V0

K∑
k=0

1

k!
Ez∼qλ

[
(V0 + log p(x, z)− log qλ(z))

k
]
� p(x).� (1)

Here, p(x, z) is the joint distribution of the probabilistic model with observed variables 
x and latent variables z, qλ(z) is the variational distribution with variational param
eters λ, and p(x) is the marginal likelihood. Further, the reference energy V0 ∈ R is an 
additional free parameter over which we optimize jointly with λ.

The proposed bounds in equation  (1) generalize the standard ELBO, which one 
obtains for K  =  1. Higher order terms make the bound successively tighter while guar-
anteeing that it still remains a lower bound for all odd orders K. In the limit K → ∞, 
equation (1) becomes an asymptotic series to the exact marginal likelihood p(x).

https://doi.org/10.1088/1742-5468/ab43d3
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Our main contributions are as follows.

	•	 �We revisit variational perturbation theory [29–31] based on cumulant expansions, 
which does not result in a bound. By introducing a generalized VI framework, 
we propose a similar yet alternative construction to cumulant expansions which 
results in a valid lower bound of the evidence.

	•	 �We furthermore show that the new bound admits unbiased Monte Carlo gradients 
with low variance, making it well suited to stochastic optimization. Unbiasedness 
is an important property and is necessary to guarantee convergence [38]. Biased 
gradients may destroy the bound and may lead to divergence problems [7, 10, 
11].

	•	 �We evaluate the proposed method experimentally both for inference and for 
model selection. Already the lowest nonstandard order K  =  3 is less prone to 
underestimating posterior variances than standard VI, and it fits better models 
in a VAE on small data sets. While this reduction in bias comes at the cost of 
larger gradient variance, we show that the gradient variance is still smaller than 
in previously proposed alternatives [10, 12, 27] to the standard ELBO, resulting 
in faster convergence.

This paper is an extended version of a proceeding conference paper by the same authors 
[4], which also gave the first reference to VI as a form of biased importance sampling, 
where the tightness of the bound is traded o against a low-variance stochastic gradient.

Our paper is structured as follows. In section 2, we revisit the cumulant expansion 
for VI. In section 3, we derive a new family of bounds with similar properties, but which 
is amenable to stochastic optimization. We then discuss theoretical properties of the 
bounds. Experiments are presented in section 4. Finally, we discuss related work in 
section 5 and open questions in section 6.

2. Background: perturbation theory for variational inference

We begin by reviewing variational perturbation theory as introduced in [29]. We con-
sider a probabilistic model with data x, latent variables z, and joint distribution p(x, z). 
The goal of Bayesian inference is to find the posterior distribution,

p(z|x) = p(x, z)

p(x)
where p(x) =

∫
p(x, z) dz.� (2)

Exact posterior inference is impossible in all but the most simple models because of 
the intractable integral defining the marginal likelihood p(x) in equation (2). Variational 
perturbation theory approximates the log marginal likelihood, or evidence, log p(x), via 
a Taylor expansion. We introduce a so-called variational distribution qλ(z), parameter-
ized by variational parameters λ, and we write the evidence as follows:

https://doi.org/10.1088/1742-5468/ab43d3


Tightening bounds for variational inference by revisiting perturbation theory

5https://doi.org/10.1088/1742-5468/ab43d3

J. S
tat. M

ech. (2019) 124004

log p(x) = log

(
Ez∼qλ

[
p(x, z)

qλ(z)

])
= log

(
Ez∼qλ

[
e−βV (x,z)

])∣∣
β=1

.� (3)

Above, the ‘interaction energy’ V  is defined as

V (x, z) ≡ log qλ(z)− log p(x, z),� (4)
and the notation (· · · )|β=1 on the right-hand side of equation (3) denotes that we intro-
duced an auxiliary real parameter β , which we set to one at the end of the calculation.

The reason for this notation is as follows. We approximate the right-hand side of 
equation (3) by a finite order Taylor expansion in β before setting β = 1. While β is not 
a small parameter, it is a placeholder that keeps track of appearances of V (x, z) which 
we consider to be small for all z in the support of qλ. More precisely, it is enough to 
demand that V (x, z) is almost constant in z with small deviations, as is the case when 
qλ(z) is close to the posterior p(z|x). (This will become clear in equation (6) below.) 
Hence, we can think of this approximation informally as an expansion in terms of the 
dierence between the log variational distribution and the log posterior.

The first order term of the Taylor expansion is the evidence lower bound, or ELBO,

L(λ) ≡ Ez∼qλ [−V (x, z)] = Ez∼qλ [log p(x, z)− log qλ(z)] .� (5)
As is well known in VI [5, 14, 46], the ELBO is a lower bound on the evidence, i.e. 
L(λ) � log p(x) for all λ. VI maximizes the ELBO over λ, and thus tries to find the 
best approximation of the evidence that is possible within a first order Taylor expan-
sion in V .

Higher order terms of the Taylor expansion lead to corrections to the standard 
ELBO. Suppressing the dependence of V  on x and z to simplify the notation, we obtain

log p(x) ≈Eqλ [−V ] +
1

2
Eqλ

[
(V − Eqλ [V ])2

]
− 1

3!
Eqλ

[
(V − Eqλ [V ])3

]

+
1

4!
Eqλ

[
(V − Eqλ [V ])4

]
− 1

2

(
1

2
Eqλ

[
(V − Eqλ [V ])2

])2

+ . . .

�

(6)

Equation (6) is called the cumulant expansion of the evidence [29]. Due to the higher 
order correction terms, it can potentially approximate the true evidence better than 
the ELBO.

Variational perturbation theory has not found its way into mainstream machine 
learning, which arguably has to do with two major problems of the cumulant expan-
sion and related approaches. First, in contrast to the ELBO, a higher order cumulant 
expansion does not result in a lower bound on the evidence. This prevents the usage of 
gradient-based optimization methods (as opposed to, e.g. coordinate updates), which 
is currently the mainstream approach to VI. A second drawback that will be discussed 
below is that the cumulant expansion cannot be estimated eciently using Monte Carlo 
sampling, as we discuss in section 3.3 below. In the following sections, we will present 
a similar construction of an improved variational objective that does not suer from 
these shortcomings, and that is compatible with black-box optimization approaches. 
To this end, we have to start from a generalized formulation of VI.

https://doi.org/10.1088/1742-5468/ab43d3
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3. Perturbative black box variational inference

This section presents our main results. We derive a family of new objective functions 
for BBVI which are amenable to stochastic optimization. We begin by deriving a gen-
eralized ELBO for VI based on concave functions. We then show that, in a special case, 
we obtain a strict bound with resemblance to variational perturbation theory.

3.1. Variational inference with generalized lower bounds

VI approximates the evidence log p(x) of the model in equation (2) by maximizing the 
ELBO L(λ) (equation (5)) over variational parameters λ. A more common approach to 
derive the ELBO is through Jensen’s inequality [5, 14, 46]. Here, we present a similar 
derivation for a broader family of lower bounds.

To this end, we consider an arbitrary concave function over the positive reals, 
f : R>0 → R. As an example, f  could be the logarithm. We now consider the marginal 
likelihood p(x) = Ez∼qλ [ p(x, z)/qλ(z)], and we derive a lower bound on f( p(x)) using 
Jensen’s inequality:

f( p(x)) � Ez∼qλ

[
f

(
p(x, z)

qλ(z)

)]
=: Lf (λ).� (7)

As stated above, for f(·) = log(·), the bound in equation (7) is the standard ELBO 
from equation (5). In this case, we refer to the corresponding VI scheme as KLVI, as 
maximizing the standard ELBO is equivalent to minimizing the Kullback–Leibler (KL) 
divergence from qλ(z) to the true posterior p(z|x).

The above class of generalized bounds Lf (λ) is compatible with current main-
stream optimization schemes for VI, oftentimes summarized as BBVI [34, 37]. For the 
reader’s convenience, we briefly review these techniques. BBVI optimizes the ELBO 
via stochastic gradient descent (SGD) based on noisy estimates of its gradient. Crudely 
speaking, BBVI obtains its gradient estimates in three steps: (1) by drawing Monte 
Carlo (MC) samples z ∼ qλ, (2) by averaging the bound over these samples, and (3) by 
computing the gradient on the resulting average. A slight complication arises as both 
the expression inside the expectation in equation (7) as well as the distribution of MC 
samples itself depend on λ. The two main solutions to this problem are as follows.

	•	 �Score function gradients [34], or the REINFORCE method, use the chain rule to 
relate the change in MC samples to a change in the log variational distribution,

∇λLf (λ) = Ez∼qλ

[
(∇λ log qλ(z)) f

(
p(x, z)

qλ(z)

)
+∇λf

(
p(x, z)

qλ(z)

)]
.� (8)

	•	 �Reparameterization gradients [16] can be used if the samples z ∼ qλ can be 
expressed as some deterministic dierentiable transformation z = g(ε;λ) of auxil-
iary random variables ε drawn from some λ-independent distribution q̃(ε). Under 
these conditions, the gradient of the bound can be written as

https://doi.org/10.1088/1742-5468/ab43d3
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∇λLf (λ) = Eε∼q̃

[
∇λf

(
p(x, g(ε;λ))

qλ(g(ε;λ))

)]
.� (9)

One obtains an unbiased estimate of ∇λLf (λ) by approximating the expectation on the 
right-hand side of equations (8) or (9) via MC samples z ∼ qλ or ε ∼ q̃, respectively. 
Empirically, reparameterization gradients often have smaller variance than score func-
tion gradients.

Based on these new bounds Lf (λ), we make the following observations.

3.1.1. Variational inference and importance sampling.  The generalized family of 
bounds, equation (7), shows that VI and importance sampling are closely connected [4, 
11]. For f(·) being the identity the variational bound becomes independent of λ and 
instead becomes an unbiased importance sampling estimator of p(x), with the proposal 
distribution qλ(z) and the importance ratio p(x, z)/qλ(z) = e−V (x,z). For other choices 
of f , the bound is no longer an unbiased estimator of p(x). This way, we can identify 
BBVI as a form of biased importance sampling.

3.1.2. Bias variance trade-off.  Importance sampling suers from high variance in high 
dimensions because the log importance ratio V (x, z) (equation (4)) scales approximately 
linearly with the size of the model. (To see this, consider a setup where both p  and q 
factorize over all N data points, in which case V  is proportional to N.)

The choice of function f  in equation (7) trades o some of this variance for a bias. 
KLVI uses f(·) = log(·), which leads to low variance gradient estimates in equations (8) 
and (9) that depend only linearly on V , rather than exponentially. This makes the 
KLVI bound easy to optimize, at the cost of some bias. An alternative to KLVI that 
has been explored in the literature is α-VI [10, 12, 21, 27], which corresponds to set-
ting f(ξ) = ξ1−α with some α ∈ (0, 1), and thus f(e−V ) = e−(1−α)V . This choice has an 
alternative bias-variance trade-o, as V  enters in the exponent, leading to more vari-
ance than KLVI. Our empirical results in figure 4, discussed in section 4.3, confirm 
this picture by showing that α-VI suers from slow convergence due to large gradient 
variance.

According to our new findings, a good alternative bound should perform favorably 
on the bias-variance trade-o. It should ideally depend on V  only polynomially as 
opposed to exponentially. Such a family of bounds will be introduced next. We also 
show how they connect to variational perturbation theory (section 2).

3.2. Perturbative lower bounds

We now propose a family of concave functions f  for the bound in equation  (7) that 
is inspired by ideas from perturbation theory (section 2). The choice of the function f  
determines the tightness of the bound Lf (λ). A tight bound, i.e. a good approximation 
of the marginal likelihood, is important for the variational expectation-maximization 
(EM) algorithm, which uses the bound as a proxy for the marginal likelihood. The 
bound Lf (λ) becomes perfectly tight if we set f = id to the identity function, id(ξ) = ξ 
(black line in figure 1). However, as we discussed, this is a singular limit in which the 

https://doi.org/10.1088/1742-5468/ab43d3
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bound Lid(λ) = p(x) does not depend on λ, and therefore does not provide any gradient 
signal to learn an optimal variational distribution qλ.

Ideally, the bound should be as tight as possible if qλ(z) is close to the posterior 
p(z|x). In order to obtain a gradient signal, the bound should be lower if qλ(z) is very 
dierent from the posterior. To achieve this, we recall that the argument ξ of the func-
tion f(ξ) in equation (7) is the fraction p(x, z)/qλ(z), which equals p(x) if qλ(z) is the 
true posterior. Thus, the concave function f  should be close to the identity function for 
arguments close to p(x). Since the only things we know about p(x) are that it is posi-
tive and independent of z, we parameterize it as e−V0 with a real parameter V0, over 
which we optimize.

For any V0 ∈ R, and any odd integer K � 1, we propose the following concave 
function:

f
(K)
V0

(ξ) = e−V0

K∑
k=0

1

k!
(V0 + log ξ)k

K→∞−→ id(ξ) (pointwise ∀ξ).� (10)

The pink and green lines in figure  1 plot f
(K)
V0

(ξ) for V0 = 0 and for K  =  1 and 

K  =  3, respectively. The function f
(K)
V0

 converges pointwise to the identity function 

(black line in figure 1) for K → ∞ because it is the Kth order Taylor expansion of 
id(ξ) = e−V0eV0+log ξ in log ξ around the reference point −V0. For any finite K, the Taylor 
expansion approximates the identity function (black line in figure 1) most closely if the 
expansion parameter |V0 + log ξ| is small. We provide further intuition for equation (10) 
in section 3.3 below.

An important result of this section is that the functions f
(K)
V0

 define a lower bound 

on the marginal likelihood for any choice of λ and V0,

0 1 2 3 4
ξ

−1

0

1

2

3

4
f
(ξ

)

importance sampling: f(ξ) = ξ

KLVI: f
(1)
0 (ξ) = 1 + log(ξ)

PBBVI (proposed): f
(3)
0 (ξ)

Figure 1.  Dierent choices for the concave fucntion f(ξ) in equation  (7). For 
f(ξ) = ξ (black), the bound is tight but independent of λ. KLVI corresponds to 

f(ξ) = log(ξ) + const. (pink). Our proposed PBBVI bound uses f
(K)
V0

(ξ) (green, 

equation (10)), which is tighter than KLVI for ξ ≈ e−V0 (we set K  =  3 and V0 = 0 

for PBBVI here).

https://doi.org/10.1088/1742-5468/ab43d3
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p(x) � f( p(x)) � L
f
(K)
V0

(λ) =: L(K)(λ,V0) (for odd K).� (11)

Here, the last equality merely introduces a more convenient notation for the bound 
defined by equations (7) and (10). An explicit form for L(K)(λ,V0) was given in equa-
tion (1) in the introduction. Equation (11) follows from equation (7) and from the fact 

that f
(K)
V0

 is concave and lies below the identity function, which we prove formally in 

section 3.4 below. Since L(K)(λ,V0) is a lower bound on p(x) for all V0, we can find the 
optimal reference point V0 that leads to the tightest bound by maximizing L(K)(λ,V0) 
jointly over both λ and V0. We also prove in section 3.4 that the bound on p(x) is 
nontrivial, i.e. that L(K)(λ,V0) is positive at its maximum. (A negative bound would be 
vacuous since p(x) is trivially larger than any negative number.)

Algorithm 1.  Perturbative black box variational inference (PBBVI).

   Input: �joint probability p(x, z); order of perturbation K (odd integer); learning rate 
schedule ρt; number of Monte Carlo samples S;   number of training iterations T;  
variational family qλ(z) that admits reparameterization gradients as in equa-
tion (9).

   Output: fitted variational parameters λ∗.
1 Initialize λ randomly and V0 ← 0;
2 for t ← 1 to T do
3        Draw S samples ε1, . . . , εS ∼ q̃ from the noise distribution (see equation (9));
       // Obtain gradient estimates of surrogate objective L̃(K)(λ,V0), see equation (12):
4        gλ ← ∇λ

[
1
S

∑S
s=1

∑K
k=0

1
k!

(
V0 + log p(x, g(εs;λ))− log qλ(g(εs;λ))

)
k
]
;

5        gV0 ← ∇V0

[
1
S

∑S
s=1

∑K
k=0

1
k!

(
V0 + log p(x, g(εs;λ))− log qλ(g(εs;λ))

)
k];

       // Perform update steps with rescaled gradients, see equation (13):
6       λ ← λ+ ρtgλ;

7        V0 ← V0 + ρt

[
gV0 − 1

S

∑S
s=1

∑K
k=0

1
k!

(
V0 + log p(x, g(εs;λ))− log qλ(g(εs;λ))

)
k
]
;

   end

To optimize the bound, we use SGD with reparameterization gradients, see sec-
tion 3.1. Score function gradients can be used in a similar way. algorithm 1 explains 
the optimization in detail. We name the method ‘perturbative black box variational 
inference’ (PBBVI). The algorithm implicitly scales all gradients by a factor of eV0 to 
avoid a potential exponential explosion or decay of gradients due to the factor e−V0 in 
the bound, equation (1). We calculate these rescaled gradients in a numerically stable 
way by considering the surrogate objective function

L̃(K)(λ,V0) ≡ eV0L(K)(λ,V0)

=
K∑
k=0

1

k!
Ez∼qλ

[(
V0 + log p(x, z)− log qλ(z)

)k]
.

�
(12)
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The rescaled gradients are thus

eV0∇λL(K)(λ,V0) = ∇λL̃(K)(λ,V0);

eV0∇V0L(K)(λ,V0) = ∇V0L̃(K)(λ,V0)− L̃(K)(λ,V0).
� (13)

Equations (12) and (13) allow us to estimate the rescaled gradients (see lines 4–7 in 
algorithm 1) without having to evaluate any potentially overflowing or underflowing 
expressions e±V0.

3.3. Connection to variational perturbation theory

We now provide more intuition for the choice of the functions f
(K)
V0

 in equation (10) by 

comparing the resulting bounds, equation (1), to the cumulant expansion, equation (6). 
We will show that the bounds enjoy similar benefits as the cumulant expansion while 
being valid lower bounds and providing unbiased Monte Carlo gradients.

Both the cumulant expansion and the proposed bounds L(K)(λ,V0) are Taylor 
expansions in V (x, z) = log qλ(z)− log p(x, z). The cumulant expansion in equation (6) 
is a Taylor expansion of the evidence log p(x). By contrast, the bound L(K)(λ,V0) in 
equation (1) is a Taylor expansion of the marginal likelihood p(x), and the expansion 
starts from a reference point V0 over which we optimize.

Despite this dierence, the two expansions are remarkably similar up to order 
K  =  3. Up to this order, the cumulant expansion, equation (6), coincides with a Taylor 
expansion of p(x) in (V − Eqλ [V ]). It is thus a special case of the proposed lower bound 
L(3)(λ,V0) if we set V0 = Eqλ [V ]. For K  >  3, the cumulant expansion contains additional 
terms that do not appear in the bound L(K)(λ,V0), such as the last spelled out term 
on the right-hand side of equation (6). These terms contain products of expectations 
under qλ, which are dicult to estimate with Monte Carlo techniques without intro-
ducing an additional bias. The bounds L(K)(λ,V0), by contrast, depend only linearly 
on expectations under qλ, which means that they can be estimated without bias with 
a single sample from qλ.

In addition, the main advantage of L(K)(λ,V0) over the cumulant expansion is that 
L(K)(λ,V0) is a lower bound on the marginal likelihood for all λ and all V0. This allows 
us to make the bound as tight as possible by maximizing it over λ and V0 using stochas-
tic gradient estimates. By contrast, variational perturbation theory with the cumulant 

Table 1.  Results for Gaussian process (GP) experiments. (a) Average marginal 
posterior variances at the positions of data points for GP regression with synthetic 
data (see figure 3). The proposed PBBVI is closer to the analytic solution than 
standard KLVI. (b) Error rate of GP classification on the test set. The lower the 
better. Our proposed PBBVI consistently obtains better classification results.

(a) GP regression (b) GP classification

Method Average variances Data set Crab Pima Heart Sonar

Analytic 0.0415 KLVI 0.22 0.245 0.148 0.212

KLVI 0.0176 PBBVI 0.11 0.240 0.133 0.173

PBBVI 0.0355
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expansion requires either optimizing towards saddle points, or optimizing a separate 
objective function, such as the ELBO, to find a good variational distribution [29].

The lack of a lower bound in the cumulant expansion is a particular limitation when 
performing model selection with the variational expectation-maximization (EM) algo-
rithm. Variational EM fits a model by maximizing an approximation of the marginal 
likelihood or the model evidence over model parameters. Such an optimization can 
diverge if the approximation is not a lower bound. This makes perturbative BBVI an 
interesting alternative for improved evidence approximations [7, 10, 11, 21, 33].

3.4. Proofs of the theorems

We conclude the presentation of the proposed bounds L(K)(λ,V0) by providing proofs 
of the claims made in section 3.2.

Theorem 1.  For all V0 ∈ R and all odd integers K � 1, the function f
(K)
V0

 defined in 

equation (10) satisfies the following properties:

	(i)	� f
(K)
V0

 is concave; and

	(ii)	� f
(K)
V0

(ξ) � ξ ∀ξ ∈ R>0.

Proof. 

	 (i)	� The first derivative of f
(K)
V0

 is

f
(K)
V0

′
(ξ) = e−V0

K−1∑
k=0

1

k!

(V0 + log ξ)k

ξ
.� (14)

		  For the second derivative, the two contributions from the denominator and the 
enumerator cancel for all but the highest order term, and we obtain

f
(K)
V0

′′
(ξ) = − e−V0

(K − 1)!

(V0 + log ξ)K−1

ξ2
� 0� (15)

		  which is nonnegative everywhere for odd K. Therefore, f
(K)
V0

 is concave.

	 (ii)	� Consider the function g(ξ) = f
(K)
V0

(ξ)− ξ, which is also concave since it has the 

same second derivative as f
(K)
V0

. Further, g has a stationary point at ξ = e−V0 

since f
(K)
V0

′
(e−V0) = 1, which can be verified by inserting into equation (14). For a 

concave function, a stationary point is a global maximum. Therefore, we have

g(ξ) � g(e−V0) = 0 ∀ξ ∈ R>0� (16)

		  which is equivalent to the proposition.� □ 

Theorem 2.  The bound on the positive quantity p(x) is nontrivial, i.e. the maximum 

value of the bound, maxλ,V0 L(K)(λ,V0), is positive for all odd integers K � 1.
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Proof.  At the maximum position (λ∗,V ∗
0 ) of L(K)(λ,V0), its gradient is zero. Taking 

the gradient with respect to V0 in equation (1) and using the product rule for the pref-
actor e−V0 and the remaining expression, we find that all terms except the contribution 
from k  =  K cancel. We thus obtain, at the maximum position (λ∗,V ∗

0 ),

Ez∼qλ∗

[(
V ∗
0 + log p(x, z)− log qλ∗(z)

)K]
= 0.� (17)

Thus, when we evaluate L(K) at (λ∗,V ∗
0 ), the term with k  =  K on the right-hand side of 

equation (1) evaluates to zero, and we are left with

L(K)(λ∗,V ∗
0 ) = e−V ∗

0 Ez∼qλ∗

[
h
(
V ∗
0 + log p(x, z)− log qλ∗(x, z)

)]
� (18)

with

h(u) =
K−1∑
k=0

uk

k!
� (19)

where the sum runs only to K  −  1.

We now show that h(u) is positive for all u and all odd K. If K  =  1, then h(u) = 1 is 
trivially positive. For K � 3, h(u) is a polynomial in u of even order K  −  1, whose high-

est order term has a positive coecient 1
(K−1)!

. Therefore, h(u) goes to positive infinity 

for both u → ∞ and u → −∞. It thus has a global minimum at some value ũ ∈ R. At 
the global minimum, its derivative is zero, i.e.

0 = h′(ũ) =
K−2∑
k=0

ũk

k!
.� (20)

−4 −2 0 2 4
z

0.0

0.1

0.2

0.3

0.4

0.5
p
(z

),
q(

z
)

target distribution p(z)
PBBVI (K =3, proposed)
α = 0.2
α → 1 (KLVI)
α = 2

Figure 2.  Behavior of dierent VI methods on fitting a univariate Gaussian to a 
bimodal target distribution (black). PBBVI (proposed, green) covers more of the 
mass of the entire distribution than the traditional KLVI (pink). α-VI is mode 
seeking for large α (blue) and mass covering for smaller α (orange).
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Subtracting equation (20) from equation (19), we find that the value of h at its global 
minimum ũ is

h(ũ) =
ũK−1

(K − 1)!
� 0� (21)

which is nonnegative because K  −  1 is even. Further, h(ũ) is not zero since this would 
imply ũ = 0 by equation (21), but h(0) = 1 by equation (19). Therefore, h(ũ) is strictly 
positive, and since ũ is a global minimum of h, we have h(u) > 0 for all u ∈ R. Inserting 
into equation (18) concludes the proof that the lower bound at the optimum is positive.
� □ 

4. Experiments

We evaluate PBBVI with dierent models. We begin with a qualitative comparison on 
a simple one-dimensional toy problem (section 4.1). We then investigate the behavior of 
BBVI in a controlled setup of Gaussian processes on synthetic data (section 4.2). Next, 
we evaluate PBBVI based on a classification task using Gaussian processes classifiers, 
where we use data from the UCI machine learning repository (section 4.3). This is a 
Bayesian non-conjugate setup where black box inference is required. Finally, we use an 
experiment with the VAE to explore our approach on a deep generative model (section 
4.4). This experiment is carried out on MNIST data. We use the perturbative order 
K  =  3 for all experiments with PBBVI. This corresponds to the lowest order beyond 
standard VI with the KL divergence (KLVI), since K has to be an odd integer, and 
PBBVI with K  =  1 is equivalent to KLVI. Across all the experiments, PBBVI demon-
strates advantages based on dierent metrics.

4.1. Mass covering eect

In figure 2, we fit a Gaussian distribution to a one-dimensional bimodal target distri-
bution (black line), using dierent divergences. Compared to BBVI with the standard 
KL divergence (KLVI, pink line), α-divergences are more mode-seeking (purple line) 
for large values of α, and more mass-covering (orange line) for small α [21] (the limit 
α → 1 recovers KLVI [27]). Our PBBVI bound (K  =  3, green line) achieves a similar 
mass-covering eect as in α-divergences, but with associated low-variance reparam
eterization gradients. This is seen in figure 4(b), discussed in section 4.3 below, which 
compares the gradient variances of α-VI and PBBVI as a function of latent dimensions.

4.2. GP regression on synthetic data

In this section, we inspect the inference behavior using a synthetic data set with 
Gaussian processes (GP). We generate the data according to a Gaussian noise distribu-
tion centered around a mixture of sinusoids, and we sample 50 data points (green dots 
in figure 3). We then use a GP to model the data, thus assuming the generative process 
f ∼ GP(0, Λ) and yi ∼ N ( fi, ε).

https://doi.org/10.1088/1742-5468/ab43d3
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In this experiment, the model admits an analytic solution (three standard deviations 
shown in blue dashed lines in figure 3). We compare the analytic solution to approxi-
mate posteriors using a fully factorized Gaussian variational distribution obtained by 
KLVI (figure 3(a)) and by the proposed PBBVI (figure 3(b)). The results from PBBVI 
are almost identical to the analytic solution. In contrast, KLVI underestimates the 
posterior variance. This is consistent with table 1(a), which shows the average marginal 
variances. PBBVI results are much closer to the analytic results.

4.3. Gaussian process classification

We evaluate the performance of PBBVI and KLVI on a GP classification task. Since 
the model is non-conjugate, no analytical baseline is available in this case. We model 
the data with the following generative process:

f ∼ GP(0, Λ), zi = σ( fi), yi ∼ Bern(zi).
� (22)

Above, Λ is the GP kernel, σ indicates the sigmoid function, and Bern indicates the 
Bernoulli distribution. We furthermore use the Matern-32 kernel,

Λij = s2

(
1 +

√
3 rij
l

)
exp

(
−

√
3 rij
l

)
, rij = ||xi − xj||2 .� (23)

4.3.1. Data.  We use four data sets from the UCI machine learning repository, suit-
able for binary classification: Crab (200 datapoints), Pima (768 datapoints), Heart (270 
datapoints), and Sonar (208 datapoints). We randomly split each of the data sets into 
two halves. One half is used for training and the other half is used for testing. We set 
the hyper parameters s  =  1 and l =

√
D/2 throughout all experiments, where D is the 

dimensionality of the input x.

(a) (b)

Figure 3.  Gaussian process regression on synthetic data (green dots). Three 
standard deviations are shown in varying shades of orange. The blue dashed lines 
show three standard deviations of the true posterior. The red dashed lines show 
the inferred three standard deviations using KLVI (a) and PBBVI (b). We see 
that the results from our proposed PBBVI are close to the analytic solution while 
traditional KLVI underestimates the variances. (a) KLVI. (b) PBBVI with K  =  3.
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Table 1(b) shows the classification performance (error rate) for these data sets. Our 
proposed PBBVI consistently performs better than the traditional KLVI.

4.3.2. Convergence speed comparison.  We also carry out a comparison in terms of 
speed of convergence, focusing on PBBVI and α-VI. Our results indicate that the 
smaller variance of the reparameterization gradient in PBBVI leads to faster conv
ergence of the optimization algorithm.

We train the GP classifier from equations (22) and (23) on the Sonar UCI data set 
using a constant learning rate. Figure 4(a) shows the test log-likelihood under the pos-
terior mean as a function of training iterations. We split the data set into equally sized 
training, validation, and test sets. We then tune the learning rate and the number of 
Monte Carlo samples per gradient step to obtain optimal performance on the validation 
set after optimizing the α-VI bound with a fixed budget of random samples. We use 
α = 0.5 here; smaller values of α (i.e. stronger mass-covering eect) leads to even slower 
convergence. We then optimize the PBBVI lower bound with the same learning rate 
and number of Monte Carlo samples. The final test error rate is 22% (the data set has 
binary labels and is approximately balanced). Although the hyperparameters are tuned 
for α-VI, PBBVI converges an order of magnitude faster (figure 4(a)).

Figure 4(b) provides more insight in the scaling of the gradient variance. Here, we 
fit GP regression models on synthetically generated data by maximizing the PBBVI 
lower bound and the α-VI lower bound with α ∈ {0.2, 0.5, 2}. We generate a separate 
synthetic data set for each N ∈ {1, . . . , 200} by drawing N random data points around 
a sinusoidal curve. For each N, we fit a one-dimensional GP regression with PBBVI 
and α-VI, respectively, using the same data set for both methods. The variational 
distribution is a fully factorized Gaussian with N latent variables. After convergence, 
we estimate the sampling variance of the gradient of each lower bound with respect 
to the posterior mean. We calculate the empirical variance of the gradient based on 
105 samples from qλ, and we average over the N coordinates. Figure 4 shows the aver-
age sampling variance as a function of N on a logarithmic scale. The variance of the 
gradient of the α-VI bound grows exponentially in the number of latent variables. By 
contrast, we find only algebraic growth for PBBVI.

4.4. Variational autoencoder

We experiment on VAEs, and we compare the PBBVI and the KLVI bound in terms 
of predictive likelihoods on held-out data [16]. Autoencoders compress unlabeled train-
ing data into low-dimensional representations by fitting it to an encoder-decoder model 
that maps the data to itself. These models are prone to learning the identity function 
when the hyperparameters are not carefully tuned, or when the network is too expres-
sive, especially for a moderately sized training set. VAEs are designed to partially avoid 
this problem by estimating the uncertainty that is associated with each data point in 
the latent space. It is therefore important that the inference method does not underes-
timate posterior variances. We show that, for small data sets, training a VAE by maxi-
mizing the PBBVI lower bound leads to higher predictive likelihoods than maximizing 
the KLVI lower bound.
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We train the VAE on the MNIST data set of handwritten digits [19]. We build on 
the publicly available implementation by [7] and we also use the same architecture and 
hyperparamters, with L  =  2 stochastic layers and S  =  5 samples from the variational 
distribution per gradient step. The model has 100 latent units in the first stochastic 
layer and 50 latent units in the second stochastic layer.

The VAE model factorizes over all data points. We train it by stochastically maxi-
mizing the sum of the PBBVI lower bounds for all data points using a minibatch size 
of 20. The VAE amortizes the gradient signal across data points by training inference 
networks. The inference networks express the mean and variance of the variational dis-
tribution as a function of the data point. We add an additional inference network that 
learns the mapping from a data point to the reference energy V0. Here, we use a network 
with four fully connected hidden layers of 200, 200, 100, and 50 units, respectively.

MNIST contains 60 000 training images. To test our approach on smaller-scale data 
where Bayesian uncertainty matters more, we evaluate the test likelihood after training 
the model on randomly sampled fractions of the training set. We use the same train-
ing schedules as in the publicly available implementation, keeping the total number of 
training iterations independent of the size of the training set. Dierent to the original 
implementation, we shue the training set before each training epoch as this turns out 
to increase the performance for both our method and the baseline.

Figure 5 shows the predictive log-likelihood of the whole test set, where the VAE is 
trained on random subsets of dierent sizes of the training set. We use the same subset 
to train with PBBVI and KLVI for each training set size. PBBVI leads to a higher pre-
dictive likelihood than traditional KLVI on subsets of the data. We explain this finding 
with our observation that the variational distributions obtained from PBBVI capture 
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Figure 4.  Comparisons between PBBVI (proposed) and α-VI. (a) Training curves 
(test log-likelihood per data point) for GP classification on the Sonar data set. 
PBBVI converges faster than α-VI even though we tuned the number of MC 
samples per training step (100) and the constant learning rate (10−5) so as to 
maximize the performance of α-VI on a validation set. (b) Sampling variance of 
the stochastic gradient (averaged over its components) in the optimum of a GP 
regression model with synthetic data, for α-divergences (orange, purple, gray), and 
the proposed PBBVI (green). The variance grows exponentially with the latent 
dimension N for α-VI, and only algebraically for PBBVI. (a)Speed of convergence. 
(b) Gradient variance.
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more of the posterior variance. As the size of the training set grows—and the posterior 
uncertainty decreases—the performance of KLVI catches up with PBBVI.

As a potential explanation why PBBVI converges to the KLVI result for large 
training sets, we note that Eqλ∗ [(V

∗
0 − V )3] = 0 at the optimal variational distribution 

qλ∗ and reference energy V ∗
0  (see section 3.4). If V  becomes a symmetric random vari-

able (such as a Gaussian) in the limit of a large training set, then this implies that 
Eqλ∗ [V ] = V ∗

0 , and PBBVI with K  =  3 reduces to KLVI for large training sets.

5. Related work

Our approach is related to BBVI, VI with generalized divergences, and variational per-
turbation theory. We thus briefly discuss related work in these three directions.

5.1. Black box variational inference (BBVI)

BBVI has already been addressed in the introduction [16, 34, 37, 39, 40]; it enables VI 
for many models [2, 3, 9, 20, 23, 26, 35]. Recent developments include variance reduc-
tion and improvements in reparameterization and amortization [6, 17, 24, 25, 36, 39, 
45] which are all compatible with our approach. Our work builds upon BBVI in that 
BBVI makes a large class of new divergence measures between the posterior and the 
approximating distribution tractable. Depending on the divergence measure, BBVI 
may suer from high-variance stochastic gradients. This is a practical problem that we 
aim to improve in this paper.

5.2. Generalized divergences measures

Our work connects to generalized information-theoretic divergences [1]. Minka [27] 
introduced a broad class of divergences for VI, including α-divergences. Most of 
these divergences have been intractable in large-scale applications until the advent of 
BBVI. In this context, α-divergences were first suggested by [12] for local divergence 
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Figure 5.  Predictive likelihood of a VAE trained on dierent sizes of the data. 
The training data are randomly sampled subsets of the MNIST training set. The 
higher value the better. Our proposed PBBVI method outperforms KLVI mainly 
when the size of the training data set is small. The fewer the training data, the 
more advantage PBBVI obtains.
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minimization, and later for global minimization by [21] and [10]. As we show in this 
paper, α-divergences have the disadvantage of inducing high-variance gradients, since 
the ratio between posterior and variational distribution enters the bound polynomially 
instead of logarithmically. In contrast, our approach leads to a more stable inference 
scheme in high dimensions.

5.3. Variational perturbation theory

Perturbation theory refers to methods that aim to truncate a typically divergent power 
series to a finite series. In machine learning, these approaches have been addressed 
from an information-theoretic perspective by [42, 43]. Thouless–Anderson–Palmer 
equations  [44] are a form of second-order perturbation theory. They were originally 
developed in statistical physics to include perturbative corrections to the mean-field 
solution of Ising models. They have been adopted into Bayesian inference in [32] and 
were advanced by many authors [15, 28, 30, 31]. In VI, perturbation theory yields extra 
terms to the mean-field variational objective which are dicult to calculate analyti-
cally. This may be a reason why the methods discussed are not widely adopted by prac-
titioners. In this paper, we emphasize the ease of including perturbative corrections in a 
BBVI framework. Furthermore, in contrast to earlier formulations, our approach yields 
a strict lower bound to the marginal likelihood which can be conveniently optimized. 
Our approach is dierent from the traditional variational perturbation formulation [18, 
41], which generally does not result in a bound.

6. Conclusion

We first presented a view on black box variational inference as a form of biased impor-
tance sampling, where we can trade-o bias versus variance by the choice of diver-
gence. Bias refers to the deviation of the bound from the true marginal likelihood, 
and variance refers to its reparameterization gradient estimator. We then proposed 
a family of new variational bounds that connect to variational perturbation theory, 
and which include corrections to the standard Kullback–Leibler bound. Our proposed 
PBBVI bound converges to the true marginal likelihood for large order K of the per-
turbative expansion, and we showed both theoretically and experimentally that it 
has lower-variance reparameterization gradients compared to α-VI. In order to scale 
up our method to massive data sets, future work will explore stochastic versions of 
PBBVI. Since the PBBVI bound contains interaction terms between all data points, 
breaking it up into mini-batches is not straightforward. Besides, while our experi-
ments used a fixed perturbative order of K  =  3, it could be beneficial to increase the 
perturbative order at some point during the training cycle once an empirical estimate 
of the gradient variance drops below a certain threshold. It would also be interesting 
to investigate a K-independent formulation of PBBVI using Russian roulette estimates 
[22]. Furthermore, the PBBVI and α-bounds can also be combined, such that PBBVI 
further approximates α-VI. This could lead to promising results on large data sets 
where traditional α-VI is hard to optimize due to its variance, and traditional PBBVI 
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converges to KLVI. As a final remark, a tighter variational bound is not guaranteed to 
always result in a better posterior approximation since the variational family limits the 
quality of the solution. However, in the context of variational EM, where one performs 
gradient-based hyperparameter optimization on the log marginal likelihood, our bound 
gives more reliable results since higher orders of K can be assumed to approximate the 
marginal likelihood better.
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