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Abstract
A typical task in statistical genetics is to find a sparse linear relation between
genotypes with phenotypes, but often the data are confounded by age, ethnicity
or population structure. We generalize the linear mixed model (LMM) Lasso ap-
proach for feature selection under confounding to the case of binary labels. This
case is much more involved, as marginalization over the correlated noise leads to
an intractable integral. We can overcome this problem with approximate infer-
ence techniques. We demonstrate on synthetic and real-world data that the sparse
features that our method finds are less correlated with the top confounders.

Introduction Genetic association studies have emerged as an important field of statistical genet-
ics [1, 2]. In this class of problems, we associate high dimensional vectors of genotypes, such as
SNPs or gene expression levels, with observable outcomes or phenotypes. These outcomes may be
binary, such as the risk of getting a certain disease. For various diseases such as type 2 diabetes [3],
the sparse linear effects that relate genotypes and phenotypes are largely undetected, which is why
these missing associations have been entitled the The Dark Matter of Genomic Associations [4].
The problem is that these sparse signals can be spurious due to confounders that induce spurious
non-causal correlations between genotypes and phenotypes. Confounding can stem from varying
experimental conditions and demographics such as age, ethnicity or gender [5]. The perhaps most
important type of confounding in statistical genetics arises due to population structure [6], which
is due to the relatedness between the samples [7, 5, 8]. Ignoring such confounders can often lead
to spurious false positive findings that cannot be replicated on independent data [9]. Correcting
for such confounding dependencies is considered to be one of the greatest challenges in statistical
genetics [10].
In this paper, we propose an algorithm for feature selection in binary classification in the presence
of confounding. Our goal is to eliminate the confounder as well as possible and find a sparse weight
vector that best captures causal relations.
Model Our model builds on the LMM-Lasso [11], an important method of statistical genetics to
limit the impact of confounding. While the LMM-lasso relies on linear regression, we generalize
this approach to the much more involved classification setup, where the target values are binary. Let
X ∈ Rd×n be the matrix of n observed data points. The corresponding labels y ∈ {−1,+1}n are
assumed to be realized according to the following model,

y = sign(X>w + ε), ε ∼ N (0,Σ), (1)

where Σ ∈ Rn×n is a fixed covariance matrix and the model parameter w ∈ Rd is unknown.
As in the LMM-lasso, the noise covariance Σ captures similarities between the samples that offer
an alternative explanation of the observed labels. This way, the sparse weight vector w focuses
on strong sparse signals that can not be well explained in terms of correlated noise. We choose
Σ = λ1I + λ2X

>X + λ3Σside, where Σside is constructed from side information such as age and
geographical location. The weights λi are cross-validated.
In order to train the model we aim to maximize the marginal likelihood in the presence of a `1-norm
regularizer (Lasso). This leads to the objective function

L(w) = − log

∫
Rn
+

N (ε;µ(w), Σ̂) dnε + λ0||w||11, (2)
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where µ(w) := diag(y)X>w and Σ̂ := diag(y)Σdiag(y). The central computational problems of
minimizing the objective function is that first, it contains an intractable, high-dimensional integral,
and second, the `1-norm regularizer is not everywhere differentiable.
Our solution to this problem is based on a combination of the alternating direction method of multi-
pliers (ADMM) [12] and expectation propagation (EP) [13] to approximate the integration over the
truncated Gaussian distribution. Our model connects to sparse probit regression [14, 15] when we
omit the off-diagonal parts of the noise covariance. It connects to Gaussian process (GP) classifica-
tion [16] when we leave out the linear effect. Capturing both methods as limiting cases, our model
therefore naturally outperforms both approaches in terms of prediction performance.

Empirical Analysis and Applications In the following we will apply our model to synthetic
and real world data and show that it outperforms LMM-Lasso, GP classification and sparse probit
regression in terms of prediction performance and feature quality.
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Figure 1: TBC: Results of the tuberculosis experiment. LEFT: Average AUC. RIGHT: Feature correlation with
first principal component (=̂ population structure), where the x-axis is sorted by descending absolute weights.

Tuberculosis Disease Outcome Prediction From Gene Expression Levels: We obtained the
dataset by [17] from the National Center for Biotechnology Information website1, which in-
cludes 40 blood samples from patients with active tuberculosis as well as 103 healthy con-
trols, together with the transcriptional signature of blood samples measured in a microarray ex-
periment with 48,803 gene expression levels, which serve as features for our purposes. Also
available is the age of subjects when the blood sample was taken, from which we com-
pute Σside. All competing methods are trained for various training set sizes n ∈ [40, 80].
We report on the area under the ROC curve (AUC) and present the results in Figure 1.
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Figure 2: TOY: Average accuracies as a function of the
number of true non-zero features in the generating model.

We furthermore computed the empirical cor-
relation of the weight vector with the first
principle component of the linear kernel
(population structure). We found that the fea-
tures that our model finds show much less
correlation with population structure (con-
founding) than the features found by probit
regression. This is because population struc-
ture was built into our model as a source of
correlated noise.
Simulated Data:
We evaluate our algorithm on synthetic data
that we generate as follows. We generate a
weight vector w ∈ R50 with k ≤ 50 entries
being 1, and else 0 and create a random co-
variance matrix Σ. Then we generate data ac-
cording to our model (1) and train the com-
peting methods and measure the performance on a held-out dataset. As a benchmark we introduce
the oracle classifier, where we use the true underlying w for prediction. In Fig. 2 we report on the
so-achieved accuracies as a function of the sparsity of the true underlying model parameter w.

1http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19491
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