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Abstract

Probit regression and logistic regression are well-known models for classification.
In contrast to logistic regression, probit regression has a canonical generalization
that allows us to model correlations between the labels. This is a way to include
metadata into the model that correlate the noisy observation process. We show that
the approach leads to the mathematical problem of integrating a high-dimensional
Gaussian density over the positive orthant. We derive a novel parameter estima-
tion algorithm for this correlated probit regression model. We interpret the noise
as a latent variable, which leads to a natural formulation of our algorithm as an
expectation-maximization (EM) scheme. Each partial M-step is a gradient step,
and we can express the gradient in terms of moments of the truncated multivariate
Gaussian. Calculating these moments - the E-step - is expensive using traditional
methods. Instead, we use a recent application of expectation propagation (EP) to
Gaussian densities. The resulting EM-EP scheme is much faster and thus allows
us to treat large data sets.

1 Introduction

Logistic regression is one of the most prominent and widely used classification models in statistics
and machine learning [1]. The model assumes that, given n observed inputs X = (x1, . . . ,xn) ∈
Rd×n, the corresponding labels y = (y1, . . . , yn)> ∈ {−1,+1}n are realized from n independent
random variables. In various applications in the sciences and technology, the assumption of inde-
pendent label variables is violated. In statistical genetics, for example, predictions might be based
on a vector xi of gene expression levels, and the corresponding label variable yi might indicate the
presence of absence of a certain disease. These labels, however, can show dependencies caused by
varying experimental conditions and confounding factors such as age, ethnicity, gender, and popu-
lation structure [2, 3, 4, 5]. We plan to model these effects in terms of correlated label noises. Here
we give the technical details for a corresponding algorithm.

Extending the logistic model to correlated multiple dimensions is non-straightforward [6, 7]. In
this paper we study the probit regression model, which is closely related to the logistic model. The
probit model has a particular advantage over the logistic model: it naturally extends to the scenario
of correlated noise. However, although the i.i.d. probit and logistic regression models are standard
in statistics and machine learning, the correlated probit model has rarely been analyzed or used in
practice [8]. Probit regression with correlated noise is a hard problem, because it is inherently con-
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nected to the classical problem in mathematics of integrating n-dimensional multivariate Gaussian
distributions over the positive orthant Rn+. This problem was until recently only solvable for small n.
In this paper, we explore a version of expectation propagation [9] to approximate this computation.
The proposed approach is much faster than previous approaches based on Genz methods [10].

2 Correlated Probit Regression

Let X = (x1, · · · ,xn) be the d× n matrix of data points and y ∈ {+1,−1}n the observed labels.
We assume the following generative process for the vector of random labels Y = (Y1, · · · , Yn)>:

Y = sign
(
X>w + ε̃

)
, ε̃ ∼ N (0, Σ̃). (1)

In this paper we consider the correlation matrix Σ̃ as given, but it can be also parametrized and
learned from the data. We want to find the vector w ∈ Rd according to the maximum likelihood
principle. We consider the data as fixed (we always implicitly condition on X). The likelihood
function is

P(Y = y|w) = P(y ◦ (X>w + ε̃ ) > 0). (2)

The symbol ◦ denotes element-wise multiplication with yi = ±1. We can introduce a new Gaussian
random noise variable ε = y ◦ ε̃. The new variable satisfies ε ∼ N (0,Σ), where we defined
Σ = diag(y) · Σ̃ · diag(y). This simplifies the likelihood,

P(Y = y|w) = P(µ(w) + ε > 0) =

∫
Rn
+

N (ε;µ(w),Σ) dnε. (3)

We defined µ(w) = y ◦ X>w for notational convenience. The likelihood is therefore an integral
of the multivariate Gaussian over the positive orthant. Our goal is to minimize the negative log
likelihood. To avoid overfitting, we add a quadratic regularizer,

L(w) = − log

∫
Rn
+

N (ε;µ(w),Σ) dnε +
1

2
λw>w. (4)

In many applications, the dimensionality of the data d is much larger than the number of samples n.
We therefore work in the dual kernel representation where we optimize over parameters αi, where
w =

∑n
i=1 αixi. We furthermore introduce the following probability distribution,

p(ε|µ,Σ) =
1[ε ∈ Rn+]N (ε;µ,Σ)∫

Rn
+
N (ε;µ,Σ) dnε

, (5)

where 1[·] is the indicator function. This is just the multivariate Gaussian, truncated and normalized
to the positive orthant. For reasons to become clear below, we will refer to it as the posterior. The
objective function can also be expressed as a function of α,

L(α) = − log

∫
Rn
+

N (ε;µ(α),Σ) +
1

2
λα>Kα, (6)

where K = X>X is the kernel matrix. The gradient can be easily computed:

∇αL(α) = −

∫
Rn
+
∇>µ N (ε;µ,Σ)∫

Rn
+
N (ε;µ,Σ)

∂µ

∂α
+ λKα = −

[∫
Rn

(ε− µ)>p(ε|µ,Σ)dnε

]
∂µ

∂α
+ λKα. (7)

This involves the Hessian matrix ∂µ
∂α = diag(y) · K, and we used the identity ∇>µ N (ε;µ,Σ) =

(ε− µ)>N (ε;µ,Σ) and the definition of the posterior p(ε|µ,Σ). Note that the gradient involves the
first moment of the posterior. This results in the following gradient descent scheme, involving the
learning rate ρt:

αt+1 = αt − ρt∇αL(αt), (8)

∇αL(αt) = −
(
Ep(ε|µ(αt),Σ)[ε]− µ(αt)

)> ∂µ
∂α

+ λKαt.
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Latent variable model and EM algorithm Our model can be interpreted as a latent variable
model. Let us consider w and ε as latent variables. Let p(w) = N (0, 2I/λ) be a prior for the vectors
w, where I is the identity matrix. We also introduce a prior on the latent variables ε̃ according to
p(ε̃) = N (0, Σ̃). As our model assumes that Y |w = sign(X>w + ε̃), we have

p(Y |w, ε̃) = 1[Y = sign(X>w + ε̃)]. (9)

Now we observe Y = y and condition on y. We want to calculate a MAP estimate of the distribution
p(w|y) = p(y|w)p(w)/p(y). Because p(y|w) =

∫
p(y|w, ε̃)p(ε̃)dε̃, applying logarithms yields

log p(w|y) = log

∫
p(y|w, ε̃)p(ε̃)dε̃+ log p(w)− log p(y). (10)

We now define L(w) = − log p(w|y) as our objective and simplify:

L(w) = − log

∫
1[y = sign(X>w + ε̃)]N (ε̃; 0, Σ̃)dε̃ +

1

2
λw>w + log p(y)

= − log

∫
1[sign(ε) = 1]N (ε; y ◦X>w,Σ)dε +

1

2
λw>w + log p(y)

= − log

∫
Rn
+

N (ε; y ◦X>w,Σ)dε +
1

2
λw>w + log p(y). (11)

In the second line, we again substituted ε = y ◦ ε̃ and also shifted the integration variable. The
final result is exactly (up to a constant) what we obtained earlier. The formulation as a latent vari-
able model has the advantage that it allows us to formulate an EM algorithm. This algorithm is
constructed according to the standard scheme,

E− step : Q(w,wt) = Ep(ε|y,wt)[log p(y, w, ε)]

M− step : wt+1 = wt + ρ∇wQ(w,wt)|w=wt . (12)

One can show that this algorithm is exactly the same as our previous one (Eq. 8, but in w-space). To
show the equivalence, we proved that ∇L(w) = −∇w′Q(w′, w)|w=w′ (not shown here). Note that
in slight deviation from usual EM, we use a partial maximization as an M-step (a gradient step).

From an EM to an EM-EP algorithm. Without further approximation, the EM algorithm is still
not tractable on large data sets: it involves the first moment of the posterior in each gradient step.
We therefore use a recent application of expectation propagation (EP) [9] to carry out the E-step
approximately. This leads to an EM-EP algorithm. In a different context, such a combined EM-EP
algorithm has been suggested in [11].

EP approximates moments of the posterior p(ε|µ,Σ) in terms of a variational distribution q(ε),
approximately minimizing the Kullback-Leibler divergence,

q(ε) = arg min
q

(∫
Rd

p(ε|µ,Σ) log p(ε|µ,Σ)−
∫

Rd

p(ε|µ,Σ) log q(ε)

)
. (13)

q(ε) is another Gaussian, characterized by the variational parameters µq and Σq:

q(ε;µq,Σq) = N (ε;µq,Σq). (14)

We approximate the mean of the posterior p in terms of the variational distribution,

Ep(ε|µ,Σ)[ε] ≈ Eq(ε)[ε] = µq. (15)

EM-EP does sequential updates on the variational parameters by iterating over the coordinates. We
callN the number of coordinate loops of the algorithm. Typically, N is unconstrained; the algorithm
is run until convergence. We will later study the properties of our algorithm where we fix N .

Warm-starting the algorithm with the variational distribution of the previous step makes the num-
ber of necessary loops N considerably smaller. We therefore pass the parameters of the previous
variational distribution as an argument to EM-EP,

qnew(ε)← EM-EP (µ,Σ, q(ε)old). (16)
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Figure 1: Objective error of EM-EP. We compare the unconstrained algorithm to versions where we
constrain N . We argue that running EP until convergence is wasteful for small learning rates ρ.

3 Empirical Results

We generated 100 data points from our model. The correlation matrix was chosen to be a weighted
sum of the unit matrix and a random positive definite symmetric matrix. We tested EM-EP on this
artificial data set. Fig. 1 shows the objective error of this optimization process. For a fixed learning
rate of ρ = 0.001, different versions of the algorithm are shown: we compared the unconstrained
algorithm against a version where we fixed N .

Our experimental findings suggest that running EP until convergence in each gradient step is waste-
ful. For small learning constant rates ρ, it is better to run a single loop of coordinate updates in
EM-EP after each gradient step, i.e. N = 1. As a benchmark, we also compare our method to a
gradient descent scheme where the integral is computed using the Genz method, and the gradient is
computed numerically. EM-EP is about 3 orders of magnitude faster in this experiment.

The learning curves for N = 1 and N = 2 show an interesting feature, namely the presence of
spikes. Note that the optimization problem is convex, and hence the spikes cannot be associated
with real local optima. Also, note that the algorithm gets only stuck temporarily. We explain this
effect as follows. The algorithm can only converge to fake local optima if the gradient is computed
not precisely enough. When the computed gradient is zero, the algorithm stops moving in parameter
space. Due to the warm start of EP we keep running multiple loops of EM-EP for the same value of
µ. This, in turn, will lead to a better and better computation of the local gradient, and finally it will
deviate from zero, as we are not in a true optimum of the objective.

To conclude, we found that our learning algorithm using expectation propagation is fast and is likely
to be applicable to large datasets of several thousands of data points, which we plan to test in the
future.

4 Conclusion

We presented a new algorithm that solves the problem of probit regression with correlated noise.
We used variational techniques to approximately compute the moments of a multivariate Gaussian
distribution, truncated to the positive orthant. Our algorithm has a natural interpretation as an EM-
EP algorithm when considering the correlated noise as a latent variable. In the future, we plan to
apply the method to large biological data sets.
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