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1 Lie Groups and Lie Algebras

1.1 Matrix Lie Groups

A subset G of GL(n, C) that is topologically closed and also closed under
the group operations (i.e. if A, B ∈ G then AB−1 ∈ G as well) is called a
matrix Lie group. It can be shown (see e.g. [Co]) that such a matrix Lie
group is automatically a differentiable sub-manifold of GL(n, C). Note that
this definition also includes zero-dimensional matrix groups like {Id,−Id} ⊂
GL(n).

In this article all matrix Lie groups are supposed to be reductive, which
– in our context – means that for each element A of the group its adjoint
A† = ĀT is also an element of the group.1

In the context of matrix Lie groups we have the usual exponential map

exp : C
n×n → GL(n, C), X 7→ eX =

∞
∑

k=0

Xk

k!
. (1)

For a given matrix Lie group G we consider the set

g =
{

X ∈ GL(n)
∣

∣ etX ∈ G for all t ∈ R
}

,

and call it the Lie algebra of G. In this definition the map t 7→ etX is a
curve in G which passes through the identity Id ∈ G. Since

d

dt

∣

∣

∣

t=0
etX = X

we can think of g as being the set of tangent vectors at the identity Id ∈ G,
i.e.

g = TIdG.

Together with the commutator [X, Y ] = XY − Y X one can show (see for
example [Ha]) that g is also an Lie algebra in the abstract sense.2

Examples of Lie groups and their Lie algebras

• G = SL(n, C) = {A ∈ C
n×n | det A = 1}, g = gl(n, C) = {X ∈

Cn×n | tr X = 0}.

1This is not the abstract definition of reductivity, which is more complicated (see for
example [Hu]). However, it can be shown that a matrix Lie group which fulfills the
definition of reductivity given here is also reductive in the abstract sense.

2Recall that an (abstract) Lie algebra is a vector space with an additional product
structure that is bilinear, skew-symmetric, and fulfills the Jacobi identity, i.e. [X, [Y, Z]]+
[Y, [Z, X ]] + [Z, [X, Y ]] = 0.

2



• G = SU (n) = {AA† = Id} ∩ {det A = 1}, g = su(n) = {X + X† =
0} ∩ {trX = 0}.

1.2 Lie Group Homomorphisms

A Lie group homomorphism is a smooth map

ϕ : G → H satisfying ϕ(gh) = ϕ(g)ϕ(h)

for all g and h. For an element g in G we denote its derivative by dgϕ :
TgG → Tϕ(g)H . In the special case of g = e (the identity in G) we obtain an
isomorphism of Lie algebras:

ϕ∗ : g → h, with ϕ∗([X, Y ]) = [ϕ∗(X), ϕ∗(Y )],

and the important relation

ϕ(eX) = eϕ∗(X).

1.3 Example: Parametrization of SO(3, R)

As an example of a case where we can explicitly calculate the exponential of
a matrix we take G = SO(3, R) = {AAT = Id}∩{det A = 1}. Its Lie algebra
is given by g = so(3, R) = {X + XT = 0} ∩ {tr X = 0} and is spanned by
the elements

F1 =





0 0 0
0 0 −1
0 1 0



 , F2 =





0 0 1
0 0 0
−1 0 0



 , F3 =





0 −1 0
1 0 0
0 0 0



 ,

for which we have

[F1, F2] = F3, [F2, F3] = F1, [F3, F1] = F2.

By choosing this basis we obtain the linear map

R
3 → so(3), (x1, x2, x3) 7→ x1F1 + x2F2 + x3F3,

which is in fact an isomorphism of Lie algebras if we take the standard cross-
product on R3. For an element x ∈ R3 we denote its image under this map
by Ax. The eigenvalues of Ax are 0 (with eigenvector x) and ±i|x|. The
geometric interpretation of the exponential of Ax is that of a rotation around
the axis Rx ⊂ R3 by the angle |x|. Using A3

x = −|x|2Ax and the standard
series expansions of sin and cos we can simplify (1) and obtain

eAx = Id +
sin |x|

|x|
Ax +

1 − cos |x|

|x|2
A2

x.
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1.4 Example: The “covering” SU (2) → SO(3)

In the case n = 2 the group SU (2) can be written as

SU (2) =
{

(

α −β̄
β ᾱ

)

∣

∣

∣
|α|2 + |β|2 = 1

}

.

Its Lie algebra su(2) is given by

su(2) =
{

(

iϕ z
−z̄ −iϕ

)

∣

∣

∣
ϕ ∈ R, z ∈ C

}

.

With the basis

E1 =
1

2

(

i 0
0 −i

)

, E2 =
1

2

(

0 1
−1 0

)

, E3 =
1

2

(

0 i
i 0

)

,

we have
su(2) = RE1 + RE2 + RE3

and
[E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2.

(Observe that by setting σk = 2/iEk for k = 1, 2, 3, one obtains the Pauli

matrices known in physics.) With the basis given above the Lie algebra
su(2) is isomorphic to (R3,×), and the group GL(su(2)) of invertible linear
operators on su(2) can in this way be identified with GL(3, R).

The group SU (2) acts on su(2) by conjugation, i.e. for all g ∈ SU (2) we
have the map X 7→ gXg−1. Thus, we have the group homomorphism

SU (2) → GL(su(2)) ∼= GL(3, R), g 7→ g(·)g−1.

One can prove that its image is exactly SO(3, R) ⊂ GL(3, R). Its kernel is
{−Id, Id}. An explicit description of this homomorphism can be found in
[DK].

1.5 The Derivative of the Exponential Mapping

We are now interested in the derivative of exp at a point X ∈ g. Before we
can write down the general formula we need to introduce some notation: For
g ∈ G we denote the map G → G, x 7→ gx by Lg. For X ∈ g we have the
linear map

adX : g → g, Y 7→ [X, Y ].

Since this map is an operator on the finite-dimensional vector space g, the
exponential ead X can be defined in the usual way (see equation (1)).
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In the case of general smooth manifolds M and N and a map f : M → N ,
the derivative dpf at a point p ∈ M goes from TpM to Tf(p)N . In our case,
M is simply the vector space g, so with X ∈ g we can identify TXg with g

itself. The derivative of the exponential map is then given by

dX exp : g → Texp(X)G

and

dX exp = deLexp X ◦

∫ 1

0

e−s ad X ds. (2)

An elementary proof of this formula is given is [Ha], chapter three. However,
it can be shown that the derivative of the exponential map can be derived
from more general principles, which is briefly discussed in appendix A.

If G is a matrix Lie group then the above map Lg : x 7→ gx is linear.
Hence, its derivative at the point e ∈ G is the same as the map itself, i. e.
deLg is the left-multiplication by g. So deLexp X(Y ) = eX ·Y , and (2) simplifies
to

dX exp = eX

∫ 1

0

e−s ad X ds = eX

∞
∑

k=0

(− ad X)k

(k + 1)!
= eX Id − e− ad X

ad X
,

where the right-hand side of the last equality is actually defined by the left-
hand side, because adX might not be invertible.

2 Coset Spaces and Homogenous Spaces

If G is a general group (not neccessarily a Lie group) and K a subgroup of
G, then we can form, for each element g ∈ G, the set gK = {gk | k ∈ K}.
The set of all such gK is called the coset space and denoted by

G/K = {gK | g ∈ G}.

It is important to note that such a coset space is, in general, not a group
anymore.3 Associated to a coset space G/K we have the naturally defined
map π : G → G/K assigning to each g its coset gK. The group G acts
transitively on G/K by left-multiplication, which we sometimes denote by
the map L̃g : G/K → G/K, xK 7→ gxK.

Note that since Lie algebras are vector spaces, they are in particular
groups with regards to vector addition, so the above construction can also
be applied to them. In such a setting, if k is a subalgebra of a Lie algebra g,

3Unless the subgroupK is “normal” in G, which means that gK = Kg for all g ∈ G.
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local slice

Figure 1: The existence of local coordinates in the example of the S1-
action on C∗. The S1-orbits are concentric circles around the origin. For
a sufficiently small neighborhood we can always find a local slice, which
parametrizes the orbits and, thus, defines local coordinates for the coset
space C∗/S1.

then g/k is the usual quotient vector space. In general, this quotient vector
space is not a Lie algebra anymore.

Now if G is a Lie group and K is a closed subgroup it can be shown
that the coset space G/K can be endowed with the structure of a smooth
manifold. We refer to such a space as a homogenous space.4

2.1 Existence of Local Coordinates

The existence of smooth local coordinates on G/K can be illustrated as
follows: An open set in G/K is by definition the image of an open set in
G under the map π : G → G/K. If we take an open set U in G, the
image π(U) ⊂ G/K can be interpreted as the set of all K-orbits intersecting
U . It is a theorem that, for a sufficiently small neighborhood U , one can
always find a local slice, i.e. a smooth submanifold of U which parametrizes
the orbits intersecting U (see Figure 1 for an illustrative example where
G = GL(1, C) = C∗ = C\{0} and K = U(1) = S1 = {z ∈ C | |z| = 1}). Such
a slice defines local coordinates for π(U) ⊂ G/K.

4Homogenous spaces are important examples of abstractly defined smooth manifolds,
i.e. manifolds that do not appear as subsets of some ambient space.
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2.2 The Tangent Space

Since homogenous spaces are manifolds we can talk about the tangent space
at a point in G/K. At the point eK ∈ G/K the tangent space can be
expressed by the Lie algebras of G and K:

TeK

(

G/K
)

= g/k. (3)

This can be seen as follows: The projection map π : G → G/K is surjective.
So its derivative at the identity in G, which we denote by π∗ : TeG →
TeK

(

G/K
)

, is also surjective. It is well-known from Linear Algebra that
any surjective linear map F : V → W between vector spaces induces an
isomorphism between V/ ker F and W . Now the kernel of π∗ is precisely k.
Together with TeG = g this yields equation (3).

3 Symmetric Spaces

A symmetric space is a homogeneous space G/K where the subgroup K
has two additional properties:

1. K is a compact5 subgroup of G, and

2. there exists an involution θ : G → G (i.e. a Lie group homomorphism
satisfying θ2 = Id) with Fix(θ)◦ ⊂ K ⊂ Fix(θ),

where Fix(θ) = {θ(g) = g} is the fixed point set of θ and Fix◦(θ) is the
topological component of Fix(θ) containing the identity element of G. In
many examples we simply have K = Fix(θ).

Examples

• G = SL(n, C), K = SU (n), θ(A) = (A†)−1.

• G = SU (n), K = SO(n), θ(A) = Ā.

From the definition of a symmetric space it follows that every symmetric
space can be equipped with a Riemannian metric. This metric is not unique.
However, the geodesics defined by such a Riemannian metric are in fact
unique. See [He] or [CE] for details.

5A matrix Lie group G is compact if convergent sequences in G have their limit in G,
and if there exists a constant C such that for all A ∈ G, |Aij | ≤ C for all 1 ≤ i, j ≤ n. For
example, the groups O(n), SO(n), and SU (n) are compact.
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3.1 The Cartan Decomposition

From the second property in the definition of a symmetric space it follows
that the Lie algebra k of K is given as the (+1)-eigenspace of θ∗ : g → g. The
(−1)-eigenspace of θ∗ is usually denoted by p and, together with k, yields the
Cartan decomposition of g

g = k ⊕ p.

Examples

• For G = SL(n, C), K = SU (n), we have θ∗(X) = −X† and, thus,
k = {X = −X†} and p = {X = X†}.

• For G = SU (n), K = SO(n), it follow θ∗(X) = X̄ and, thus,

k = {X ∈ su(n) |X = X̄} = {X ∈ R
n×n |X = −XT}

and p = {X ∈ Rn×n |X = XT}.

Note that p is a canonically defined complement of k. One can think of it
as being “perpedicular” to k. Since θ∗ preserves the bracket operation, one
can easily prove the following important inclusions:

[p, p] ⊂ k and [k, p] ⊂ p. (4)

From the Cartan decomposition it follows that p is canonically isomorphic
to the quotient g/k, which in turn is the tangent space of G/K at the point
eK. Thus

TeK

(

G/K
)

= g/k ∼= p (5)

3.2 The Exponential Map for Symmetric Spaces

Since symmetric spaces have a close relation to Lie groups, one can also
define an exponential map for them:

Exp : p → G/K, Exp = π ◦ exp |p (6)

The derivative of Exp at a point X ∈ p is the map dXExp : p →
TExpXG/K. In view of (6) it can be calculated by using the derivative of
(Lie-theoretic) exp and applying the chain rule. Furthermore, we can sim-
plify the resulting expression by using equation (4) and deπ(k) = 0 and obtain

dXExp = deKL̃exp X ◦
∞

∑

k=0

(− ad X)2k

(2k + 1)!
,
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Exp

G/K

p

Figure 2: Straight lines in p passing through the origin are mapped to
geodesics in G/K by Exp.

where L̃g(xK) = gxK is defined as in section 2. Using

sinh(x)

x
=

∞
∑

k=0

(−x)2k

(2k + 1)!

we get an expression of dXExp which is perhaps easier to remember:

dXExp = deKL̃exp X ◦
sinh ad X

adX
.

3.3 The Exponential Map and Geodesics

If M is a general Riemannian manifold one can always define a local dif-
feomorphism from the tangent space at a point p ∈ M into M which maps
straight lines passing through the origin in TpM to geodesics in M . This
map is usually called the Riemannian exponential map and denoted by Exp.
See [He] for details.

In section 2 it was remarked that geodesics on a symmetric space are
independet of the choice of the respective Riemannian metric. Thus, the
Riemannian exponential map is unique in such a context. It can be shown
that it can be directly expressed by the usual Lie-theoretic exponential map.

So, by using (5), we have a relation between straight lines in p passing
through the origin and geodesics in G/K (see figure 2).
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A A Variational Formula for time-dependent

Vector Fields

Let M be a smooth manifold and vε a smoothly parametrized family of vector
fields on M . For each vε we have an associated flow Φt

ε which we assume to
be globally defined. The derivative of Φt

ε with respect to ε can be expressed
by the following variational formula:

d

dε
Φt

ε(x) =

∫ t

0

dΦs
ε(x)Φ

t−s
ε

vε

dε
(Φs

ε(x)) ds ∈ TΦt
ε
M. (7)

In the context of a general Lie group G with Lie algebra g we can apply
the above formula to the vector fields defined by X + εY , where X and Y
are elements of the Lie algebra of G and ε is a real number. The associated
flow is then given by the exponential map

Φs
ε(x) = exp(s(X + εY ))x, x ∈ G.

Applying this to (7) and then simplifying yields the general formula for the
derivative of the exponential map:

dX exp = deLexp X ◦

∫ 1

0

e−s ad X ds.

More details can be found in [DK] and [He].
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C Notation

Ā Complex conjugate of A
AT The transpose of A
A† The adjoint of A, i.e. ĀT

Id The identity matrix
GL(n, C) {A ∈ C

n×n | det A 6= 1}
SL(n, C) {A ∈ Cn×n | det A = 1}
U (n) {A ∈ GL(n, C) |AA† = Id}
SU (n) U(n) ∩ SL(n, C)
O(n) {A ∈ GL(n, R) |AAT = Id}
SO(n) O(n) ∩ SL(n, R)
G A general (matrix) Lie group
G◦ The topological component of G which contains the

identity element
e The identity element of a Lie group
eX The exponential of a matrix X, i.e. eX =

∑∞

k=0 Xk/k!
TgG The tangent space of G at a point g ∈ G
g The Lie algebra of G, i.e. g = TeG
[X, Y ] The commutator of two Lie algebra elements,

i.e. [X, Y ] = XY − Y X
Lg The map defined by left multiplication by g ∈ G,

i.e. Lg(x) = gx
dpf The differential of a smooth map f : M → N

beween manifolds.
ϕ∗ The differential of a Lie group homomorphism at

the point e ∈ G, i.e. ϕ∗ = deϕ
ad X The map definied by (adX)(Y ) = [X, Y ]
Fix(θ) The fixed point set of the involution θ
Fix(θ)◦ The topological component of Fix(θ) containing the identity.
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