Symmetric Spaces Toolkit

SFB/TR12
Langeoog, Nov. 1st-7th 2007

H. Sebert* ${ }^{*}$ S. Mandt ${ }^{\dagger}$

Contents

1 Lie Groups and Lie Algebras 2
1.1 Matrix Lie Groups 2
1.2 Lie Group Homomorphisms 3
1.3 Example: Parametrization of $S O(3, \mathbb{R})$ 3
1.4 Example: The "covering" $S U(2) \rightarrow S O(3)$ 4
1.5 The Derivative of the Exponential Mapping 4
2 Coset Spaces and Homogenous Spaces 5
2.1 Existence of Local Coordinates 6
2.2 The Tangent Space 7
3 Symmetric Spaces 7
3.1 The Cartan Decomposition 8
3.2 The Exponential Map for Symmetric Spaces 8
3.3 The Exponential Map and Geodesics 9
A A Variational Formula for time-dependent Vector Fields 10
B Acknowledgements 10
C Notation 11

[^0]
1 Lie Groups and Lie Algebras

1.1 Matrix Lie Groups

A subset G of $G L(n, \mathbb{C})$ that is topologically closed and also closed under the group operations (i.e. if $A, B \in G$ then $A B^{-1} \in G$ as well) is called a matrix Lie group. It can be shown (see e.g. [Co]) that such a matrix Lie group is automatically a differentiable sub-manifold of $G L(n, \mathbb{C})$. Note that this definition also includes zero-dimensional matrix groups like $\{\mathrm{Id},-\mathrm{Id}\} \subset$ $G L(n)$.

In this article all matrix Lie groups are supposed to be reductive, which - in our context - means that for each element A of the group its adjoint $A^{\dagger}=\bar{A}^{T}$ is also an element of the group. ${ }^{1}$

In the context of matrix Lie groups we have the usual exponential map

$$
\begin{equation*}
\exp : \mathbb{C}^{n \times n} \rightarrow G L(n, \mathbb{C}), \quad X \mapsto e^{X}=\sum_{k=0}^{\infty} \frac{X^{k}}{k!} \tag{1}
\end{equation*}
$$

For a given matrix Lie group G we consider the set

$$
\mathfrak{g}=\left\{X \in G L(n) \mid e^{t X} \in G \text { for all } t \in \mathbb{R}\right\},
$$

and call it the Lie algebra of G. In this definition the map $t \mapsto e^{t X}$ is a curve in G which passes through the identity $\operatorname{Id} \in G$. Since

$$
\left.\frac{d}{d t}\right|_{t=0} e^{t X}=X
$$

we can think of \mathfrak{g} as being the set of tangent vectors at the identity $\operatorname{Id} \in G$, i.e.

$$
\mathfrak{g}=T_{\mathrm{Id}} G
$$

Together with the commutator $[X, Y]=X Y-Y X$ one can show (see for example [Ha]) that \mathfrak{g} is also an Lie algebra in the abstract sense. ${ }^{2}$

Examples of Lie groups and their Lie algebras

- $G=S L(n, \mathbb{C})=\left\{A \in \mathbb{C}^{n \times n} \mid \operatorname{det} A=1\right\}, \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})=\{X \in$ $\left.\mathbb{C}^{n \times n} \mid \operatorname{tr} X=0\right\}$.

[^1]- $G=S U(n)=\left\{A A^{\dagger}=\operatorname{Id}\right\} \cap\{\operatorname{det} A=1\}, \mathfrak{g}=\mathfrak{s u}(n)=\left\{X+X^{\dagger}=\right.$ $0\} \cap\{\operatorname{tr} X=0\}$.

1.2 Lie Group Homomorphisms

A Lie group homomorphism is a smooth map

$$
\varphi: G \rightarrow H \quad \text { satisfying } \quad \varphi(g h)=\varphi(g) \varphi(h)
$$

for all g and h. For an element g in G we denote its derivative by $d_{g} \varphi$: $T_{g} G \rightarrow T_{\varphi(g)} H$. In the special case of $g=e$ (the identity in G) we obtain an isomorphism of Lie algebras:

$$
\varphi_{*}: \mathfrak{g} \rightarrow \mathfrak{h}, \quad \text { with } \quad \varphi_{*}([X, Y])=\left[\varphi_{*}(X), \varphi_{*}(Y)\right]
$$

and the important relation

$$
\varphi\left(e^{X}\right)=e^{\varphi_{*}(X)} .
$$

1.3 Example: Parametrization of $S O(3, \mathbb{R})$

As an example of a case where we can explicitly calculate the exponential of a matrix we take $G=S O(3, \mathbb{R})=\left\{A A^{T}=\operatorname{Id}\right\} \cap\{\operatorname{det} A=1\}$. Its Lie algebra is given by $\mathfrak{g}=\mathfrak{s o}(3, \mathbb{R})=\left\{X+X^{T}=0\right\} \cap\{\operatorname{tr} X=0\}$ and is spanned by the elements

$$
F_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad F_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \quad F_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

for which we have

$$
\left[F_{1}, F_{2}\right]=F_{3}, \quad\left[F_{2}, F_{3}\right]=F_{1}, \quad\left[F_{3}, F_{1}\right]=F_{2}
$$

By choosing this basis we obtain the linear map

$$
\mathbb{R}^{3} \rightarrow \mathfrak{s o}(3), \quad\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1} F_{1}+x_{2} F_{2}+x_{3} F_{3},
$$

which is in fact an isomorphism of Lie algebras if we take the standard crossproduct on \mathbb{R}^{3}. For an element $x \in \mathbb{R}^{3}$ we denote its image under this map by A_{x}. The eigenvalues of A_{x} are 0 (with eigenvector x) and $\pm i|x|$. The geometric interpretation of the exponential of A_{x} is that of a rotation around the axis $\mathbb{R} x \subset \mathbb{R}^{3}$ by the angle $|x|$. Using $A_{x}^{3}=-|x|^{2} A_{x}$ and the standard series expansions of sin and cos we can simplify (1) and obtain

$$
e^{A_{x}}=\operatorname{Id}+\frac{\sin |x|}{|x|} A_{x}+\frac{1-\cos |x|}{|x|^{2}} A_{x}^{2} .
$$

1.4 Example: The "covering" $S U(2) \rightarrow S O(3)$

In the case $n=2$ the group $S U(2)$ can be written as

$$
S U(2)=\left\{\left.\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)| | \alpha\right|^{2}+|\beta|^{2}=1\right\} .
$$

Its Lie algebra $\mathfrak{s u}(2)$ is given by

$$
\mathfrak{s u}(2)=\left\{\left.\left(\begin{array}{cc}
i \varphi & z \\
-\bar{z} & -i \varphi
\end{array}\right) \right\rvert\, \varphi \in \mathbb{R}, z \in \mathbb{C}\right\} .
$$

With the basis

$$
E_{1}=\frac{1}{2}\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad E_{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad E_{3}=\frac{1}{2}\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right),
$$

we have

$$
\mathfrak{s u}(2)=\mathbb{R} E_{1}+\mathbb{R} E_{2}+\mathbb{R} E_{3}
$$

and

$$
\left[E_{1}, E_{2}\right]=E_{3}, \quad\left[E_{2}, E_{3}\right]=E_{1}, \quad\left[E_{3}, E_{1}\right]=E_{2}
$$

(Observe that by setting $\sigma_{k}=2 / i E_{k}$ for $k=1,2,3$, one obtains the Pauli matrices known in physics.) With the basis given above the Lie algebra $\mathfrak{s u}(2)$ is isomorphic to $\left(\mathbb{R}^{3}, \times\right)$, and the group $G L(\mathfrak{s u}(2))$ of invertible linear operators on $\mathfrak{s u}(2)$ can in this way be identified with $G L(3, \mathbb{R})$.

The group $S U(2)$ acts on $\mathfrak{s u}(2)$ by conjugation, i.e. for all $g \in S U(2)$ we have the map $X \mapsto g X g^{-1}$. Thus, we have the group homomorphism

$$
S U(2) \rightarrow G L(\mathfrak{s u}(2)) \cong G L(3, \mathbb{R}), \quad g \mapsto g(\cdot) g^{-1}
$$

One can prove that its image is exactly $S O(3, \mathbb{R}) \subset G L(3, \mathbb{R})$. Its kernel is $\{-\mathrm{Id}, \mathrm{Id}\}$. An explicit description of this homomorphism can be found in [DK].

1.5 The Derivative of the Exponential Mapping

We are now interested in the derivative of exp at a point $X \in \mathfrak{g}$. Before we can write down the general formula we need to introduce some notation: For $g \in G$ we denote the map $G \rightarrow G, x \mapsto g x$ by L_{g}. For $X \in \mathfrak{g}$ we have the linear map

$$
\operatorname{ad} X: \mathfrak{g} \rightarrow \mathfrak{g}, \quad Y \mapsto[X, Y] .
$$

Since this map is an operator on the finite-dimensional vector space \mathfrak{g}, the exponential $e^{\text {ad } X}$ can be defined in the usual way (see equation (1)).

In the case of general smooth manifolds M and N and a map $f: M \rightarrow N$, the derivative $d_{p} f$ at a point $p \in M$ goes from $T_{p} M$ to $T_{f(p)} N$. In our case, M is simply the vector space \mathfrak{g}, so with $X \in \mathfrak{g}$ we can identify $T_{X} \mathfrak{g}$ with \mathfrak{g} itself. The derivative of the exponential map is then given by

$$
d_{X} \exp : \mathfrak{g} \rightarrow T_{\exp (X)} G
$$

and

$$
\begin{equation*}
d_{X} \exp =d_{e} L_{\exp X} \circ \int_{0}^{1} e^{-s \operatorname{ad} X} d s \tag{2}
\end{equation*}
$$

An elementary proof of this formula is given is [Ha], chapter three. However, it can be shown that the derivative of the exponential map can be derived from more general principles, which is briefly discussed in appendix A.

If G is a matrix Lie group then the above map $L_{g}: x \mapsto g x$ is linear. Hence, its derivative at the point $e \in G$ is the same as the map itself, i. e. $d_{e} L_{g}$ is the left-multiplication by g. So $d_{e} L_{\exp X}(Y)=e^{X} \cdot Y$, and (2) simplifies to

$$
d_{X} \exp =e^{X} \int_{0}^{1} e^{-s \operatorname{ad} X} d s=e^{X} \sum_{k=0}^{\infty} \frac{(-\operatorname{ad} X)^{k}}{(k+1)!}=e^{X} \frac{\operatorname{Id}-e^{-\operatorname{ad} X}}{\operatorname{ad} X},
$$

where the right-hand side of the last equality is actually defined by the lefthand side, because ad X might not be invertible.

2 Coset Spaces and Homogenous Spaces

If G is a general group (not neccessarily a Lie group) and K a subgroup of G, then we can form, for each element $g \in G$, the set $g K=\{g k \mid k \in K\}$. The set of all such $g K$ is called the coset space and denoted by

$$
G / K=\{g K \mid g \in G\}
$$

It is important to note that such a coset space is, in general, not a group anymore. ${ }^{3}$ Associated to a coset space G / K we have the naturally defined map $\pi: G \rightarrow G / K$ assigning to each g its coset $g K$. The group G acts transitively on G / K by left-multiplication, which we sometimes denote by the map $\tilde{L}_{g}: G / K \rightarrow G / K, x K \mapsto g x K$.

Note that since Lie algebras are vector spaces, they are in particular groups with regards to vector addition, so the above construction can also be applied to them. In such a setting, if \mathfrak{k} is a subalgebra of a Lie algebra \mathfrak{g},

[^2]

Figure 1: The existence of local coordinates in the example of the S^{1} action on \mathbb{C}^{*}. The S^{1}-orbits are concentric circles around the origin. For a sufficiently small neighborhood we can always find a local slice, which parametrizes the orbits and, thus, defines local coordinates for the coset space \mathbb{C}^{*} / S^{1}.
then $\mathfrak{g} / \mathfrak{k}$ is the usual quotient vector space. In general, this quotient vector space is not a Lie algebra anymore.

Now if G is a Lie group and K is a closed subgroup it can be shown that the coset space G / K can be endowed with the structure of a smooth manifold. We refer to such a space as a homogenous space. ${ }^{4}$

2.1 Existence of Local Coordinates

The existence of smooth local coordinates on G / K can be illustrated as follows: An open set in G / K is by definition the image of an open set in G under the map $\pi: G \rightarrow G / K$. If we take an open set U in G, the image $\pi(U) \subset G / K$ can be interpreted as the set of all K-orbits intersecting U. It is a theorem that, for a sufficiently small neighborhood U, one can always find a local slice, i.e. a smooth submanifold of U which parametrizes the orbits intersecting U (see Figure 1 for an illustrative example where $G=G L(1, \mathbb{C})=\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ and $\left.K=U(1)=S^{1}=\{z \in \mathbb{C}| | z \mid=1\}\right)$. Such a slice defines local coordinates for $\pi(U) \subset G / K$.

[^3]
2.2 The Tangent Space

Since homogenous spaces are manifolds we can talk about the tangent space at a point in G / K. At the point $e K \in G / K$ the tangent space can be expressed by the Lie algebras of G and K :

$$
\begin{equation*}
T_{e K}(G / K)=\mathfrak{g} / \mathfrak{k} . \tag{3}
\end{equation*}
$$

This can be seen as follows: The projection map $\pi: G \rightarrow G / K$ is surjective. So its derivative at the identity in G, which we denote by $\pi_{*}: T_{e} G \rightarrow$ $T_{e K}(G / K)$, is also surjective. It is well-known from Linear Algebra that any surjective linear map $F: V \rightarrow W$ between vector spaces induces an isomorphism between $V / \operatorname{ker} F$ and W. Now the kernel of π_{*} is precisely \mathfrak{k}. Together with $T_{e} G=\mathfrak{g}$ this yields equation (3).

3 Symmetric Spaces

A symmetric space is a homogeneous space G / K where the subgroup K has two additional properties:

1. K is a compact ${ }^{5}$ subgroup of G, and
2. there exists an involution $\theta: G \rightarrow G$ (i.e. a Lie group homomorphism satisfying $\left.\theta^{2}=\mathrm{Id}\right)$ with $\operatorname{Fix}(\theta)^{\circ} \subset K \subset \operatorname{Fix}(\theta)$,
where $\operatorname{Fix}(\theta)=\{\theta(g)=g\}$ is the fixed point set of θ and $\operatorname{Fix}^{\circ}(\theta)$ is the topological component of $\operatorname{Fix}(\theta)$ containing the identity element of G. In many examples we simply have $K=\operatorname{Fix}(\theta)$.

Examples

- $G=S L(n, \mathbb{C}), K=S U(n), \theta(A)=\left(A^{\dagger}\right)^{-1}$.
- $G=S U(n), K=S O(n), \theta(A)=\bar{A}$.

From the definition of a symmetric space it follows that every symmetric space can be equipped with a Riemannian metric. This metric is not unique. However, the geodesics defined by such a Riemannian metric are in fact unique. See [He] or [CE] for details.

[^4]
3.1 The Cartan Decomposition

From the second property in the definition of a symmetric space it follows that the Lie algebra \mathfrak{k} of K is given as the $(+1)$-eigenspace of $\theta_{*}: \mathfrak{g} \rightarrow \mathfrak{g}$. The (-1)-eigenspace of θ_{*} is usually denoted by \mathfrak{p} and, together with \mathfrak{k}, yields the Cartan decomposition of \mathfrak{g}

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}
$$

Examples

- For $G=S L(n, \mathbb{C}), K=S U(n)$, we have $\theta_{*}(X)=-X^{\dagger}$ and, thus, $\mathfrak{k}=\left\{X=-X^{\dagger}\right\}$ and $\mathfrak{p}=\left\{X=X^{\dagger}\right\}$.
- For $G=S U(n), K=S O(n)$, it follow $\theta_{*}(X)=\bar{X}$ and, thus,

$$
\mathfrak{k}=\{X \in \mathfrak{s u}(n) \mid X=\bar{X}\}=\left\{X \in \mathbb{R}^{n \times n} \mid X=-X^{T}\right\}
$$

and $\mathfrak{p}=\left\{X \in \mathbb{R}^{n \times n} \mid X=X^{T}\right\}$.
Note that \mathfrak{p} is a canonically defined complement of \mathfrak{k}. One can think of it as being "perpedicular" to \mathfrak{k}. Since θ_{*} preserves the bracket operation, one can easily prove the following important inclusions:

$$
\begin{equation*}
[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k} \quad \text { and } \quad[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p} \tag{4}
\end{equation*}
$$

From the Cartan decomposition it follows that \mathfrak{p} is canonically isomorphic to the quotient $\mathfrak{g} / \mathfrak{k}$, which in turn is the tangent space of G / K at the point $e K$. Thus

$$
\begin{equation*}
T_{e K}(G / K)=\mathfrak{g} / \mathfrak{k} \cong \mathfrak{p} \tag{5}
\end{equation*}
$$

3.2 The Exponential Map for Symmetric Spaces

Since symmetric spaces have a close relation to Lie groups, one can also define an exponential map for them:

$$
\begin{equation*}
\operatorname{Exp}: \mathfrak{p} \rightarrow G / K, \quad \operatorname{Exp}=\pi \circ \exp \mid \mathfrak{p} \tag{6}
\end{equation*}
$$

The derivative of Exp at a point $X \in \mathfrak{p}$ is the map $d_{X} \operatorname{Exp}: \mathfrak{p} \rightarrow$ $T_{\operatorname{Exp} X} G / K$. In view of (6) it can be calculated by using the derivative of (Lie-theoretic) exp and applying the chain rule. Furthermore, we can simplify the resulting expression by using equation (4) and $d_{e} \pi(\mathfrak{k})=0$ and obtain

$$
d_{X} \operatorname{Exp}=d_{e K} \tilde{L}_{\exp X} \circ \sum_{k=0}^{\infty} \frac{(-\operatorname{ad} X)^{2 k}}{(2 k+1)!}
$$

Figure 2: Straight lines in \mathfrak{p} passing through the origin are mapped to geodesics in G / K by Exp.
where $\tilde{L}_{g}(x K)=g x K$ is defined as in section 2. Using

$$
\frac{\sinh (x)}{x}=\sum_{k=0}^{\infty} \frac{(-x)^{2 k}}{(2 k+1)!}
$$

we get an expression of d_{X} Exp which is perhaps easier to remember:

$$
d_{X} \operatorname{Exp}=d_{e K} \tilde{L}_{\exp X} \circ \frac{\sinh \operatorname{ad} X}{\operatorname{ad} X} .
$$

3.3 The Exponential Map and Geodesics

If M is a general Riemannian manifold one can always define a local diffeomorphism from the tangent space at a point $p \in M$ into M which maps straight lines passing through the origin in $T_{p} M$ to geodesics in M. This map is usually called the Riemannian exponential map and denoted by Exp. See [He] for details.

In section 2 it was remarked that geodesics on a symmetric space are independet of the choice of the respective Riemannian metric. Thus, the Riemannian exponential map is unique in such a context. It can be shown that it can be directly expressed by the usual Lie-theoretic exponential map.

So, by using (5), we have a relation between straight lines in \mathfrak{p} passing through the origin and geodesics in G / K (see figure 2).

A A Variational Formula for time-dependent Vector Fields

Let M be a smooth manifold and v_{ε} a smoothly parametrized family of vector fields on M. For each v_{ε} we have an associated flow Φ_{ε}^{t} which we assume to be globally defined. The derivative of Φ_{ε}^{t} with respect to ε can be expressed by the following variational formula:

$$
\begin{equation*}
\frac{d}{d \varepsilon} \Phi_{\varepsilon}^{t}(x)=\int_{0}^{t} d_{\Phi_{\varepsilon}^{s}(x)} \Phi_{\varepsilon}^{t-s} \frac{v_{\varepsilon}}{d \varepsilon}\left(\Phi_{\varepsilon}^{s}(x)\right) d s \in T_{\Phi_{\varepsilon}^{t}} M \tag{7}
\end{equation*}
$$

In the context of a general Lie group G with Lie algebra \mathfrak{g} we can apply the above formula to the vector fields defined by $X+\varepsilon Y$, where X and Y are elements of the Lie algebra of G and ε is a real number. The associated flow is then given by the exponential map

$$
\Phi_{\varepsilon}^{s}(x)=\exp (s(X+\varepsilon Y)) x, \quad x \in G
$$

Applying this to (7) and then simplifying yields the general formula for the derivative of the exponential map:

$$
d_{X} \exp =d_{e} L_{\exp X} \circ \int_{0}^{1} e^{-s \operatorname{ad} X} d s
$$

More details can be found in [DK] and [He].

B Acknowledgements

We would like to thank the members of the "Seminar der Doktorranden des SFB/TR-12, Trace Formulas and Symmetric Spaces" for their help and suggestions.

C No	tation
\bar{A}	Complex conjugate of A
A^{T}	The transpose of A
A^{\dagger}	The adjoint of A, i.e. \bar{A}^{T}
Id	The identity matrix
$G L(n, \mathbb{C})$	$\left\{A \in \mathbb{C}^{n \times n} \mid \operatorname{det} A \neq 1\right\}$
$S L(n, \mathbb{C})$	$\left\{A \in \mathbb{C}^{n \times n} \mid \operatorname{det} A=1\right\}$
$U(n)$	$\left\{A \in G L(n, \mathbb{C}) \mid A A^{\dagger}=\mathrm{Id}\right\}$
$S U(n)$	$U(n) \cap S L(n, \mathbb{C})$
$O(n)$	$\left\{A \in G L(n, \mathbb{R}) \mid A A^{T}=\operatorname{Id}\right\}$
$S O(n)$	$O(n) \cap S L(n, \mathbb{R})$
G	A general (matrix) Lie group
G°	The topological component of G which contains the identity element
e	The identity element of a Lie group
e^{X}	The exponential of a matrix X, i.e. $e^{X}=\sum_{k=0}^{\infty} X^{k} / k$!
$T_{g} G$	The tangent space of G at a point $g \in G$
\mathfrak{g}	The Lie algebra of G, i.e. $\mathfrak{g}=T_{e} G$
$[X, Y]$	The commutator of two Lie algebra elements, i.e. $[X, Y]=X Y-Y X$
L_{g}	The map defined by left multiplication by $g \in G$, i.e. $L_{g}(x)=g x$
$d_{p} f$	The differential of a smooth map $f: M \rightarrow N$ beween manifolds.
φ_{*}	The differential of a Lie group homomorphism at the point $e \in G$, i.e. $\varphi_{*}=d_{e} \varphi$
ad X	The map definied by $(\operatorname{ad} X)(Y)=[X, Y]$
$\operatorname{Fix}(\theta)$	The fixed point set of the involution θ
$\operatorname{Fix}(\theta)^{\circ}$	The topological component of $\operatorname{Fix}(\theta)$ containing the identity.

References

[CE] Jeff Cheeger, David G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland, 1975.
[Co] Lawrence Conlon, Differentiable manifolds: a first course, Birkhäuser, 1993.
[DK] J. J. Duistermaat, J. A. C. Kolk, Lie Groups, Springer, 2000.
[Ha] Brian C. Hall, Lie Groups, Lie Algebras, and Representations, Springer, 2003.
[He] Sigurdur Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978.
[Hu] James E. Humphreys, Linear Algebraic Groups, Springer, 1975.

[^0]: *holger.sebert@ruhr-uni-bochum.de
 †mandt@thp.uni-koeln.de

[^1]: ${ }^{1}$ This is not the abstract definition of reductivity, which is more complicated (see for example $[\mathrm{Hu}])$. However, it can be shown that a matrix Lie group which fulfills the definition of reductivity given here is also reductive in the abstract sense.
 ${ }^{2}$ Recall that an (abstract) Lie algebra is a vector space with an additional product structure that is bilinear, skew-symmetric, and fulfills the Jacobi identity, i.e. $[X,[Y, Z]]+$ $[Y,[Z, X]]+[Z,[X, Y]]=0$.

[^2]: ${ }^{3}$ Unless the subgroup K is "normal" in G, which means that $g K=K g$ for all $g \in G$.

[^3]: ${ }^{4}$ Homogenous spaces are important examples of abstractly defined smooth manifolds, i.e. manifolds that do not appear as subsets of some ambient space.

[^4]: ${ }^{5}$ A matrix Lie group G is compact if convergent sequences in G have their limit in G, and if there exists a constant C such that for all $A \in G,\left|A_{i j}\right| \leq C$ for all $1 \leq i, j \leq n$. For example, the groups $O(n), S O(n)$, and $S U(n)$ are compact.

