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Abstract

Among the goals of statistical genetics is to find
sparse associations of genetic data with binary
phenotypes, such as heritable diseases. Often,
the data are obfuscated by confounders such as
age, ancestry, or population structure. A widely
appreciated modeling paradigm which corrects
for such confounding relies on linear mixed mod-
els. These are linear regression models with cor-
related noise, where the noise covariance cap-
tures similarities between the samples. We gen-
eralize this modeling paradigm to binary classi-
fication. We thereby face the technical challenge
that that marginalizing over the noise leads to an
intractable, high-dimensional integral. We pro-
pose a variational EM algorithm to overcome this
problem, where the global model parameters are
`1-norm regularized, leading to a sparse solution.
The selected features are much less affected by
the spurious correlations in the data, manifested
by a smaller correlation between the features and
the first principal component of the noise covari-
ance. The proposed method also outperforms
Gaussian process classification and uncorrelated
probit regression in terms of prediction perfor-
mance. In addition, we discuss ongoing work
on employing stochastic gradient MCMC for this
problem class.

1 Introduction

Genetic association studies have emerged as an important
branch of statistical genetics [1, 2]. The goal of this field is
to find causal associations between high-dimensional vec-
tors of genotypes, such as single nucleotide polymorphisms
(SNPs), and observable outcomes or phenotypes. These
phenotypes may be continuous or binary, an example being
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the outcome of a certain disease. For various complex dis-
eases, such as bipolar disorder or type 2 diabetes [3], the
relevant causal mutations along the genome are yet largely
undetected [1], and thus have been entitled The Dark Mat-
ter of Genomic Associations [4].

Genetic associations can be spurious, unreliable, and unre-
producible when the data are subject to confounding [5, 6,
7]. Confounding can stem from varying experimental con-
ditions and demographics such as age, ethnicity, or gen-
der [8]. The perhaps most important type of confound-
ing in statistical genetics arises due to population struc-
ture [9], as well as similarities between closely related sam-
ples [8, 10, 11]. Ignoring such confounders can often lead
to spurious false positive findings that cannot be replicated
on independent data [12]. Correcting for such confounding
dependencies is considered one of the greatest challenges
in statistical genetics [13].

A popular approach of correcting for spurious correla-
tions in statistical genetics is based on linear mixed mod-
els (LMMs) [10]. These are essentially linear regression
models with multivariate noise. LMMs account for a lin-
ear effect of genotypes on the phenotypes which is assumed
to be sparse, motivated by the idea that most genetic muta-
tions do not contribute to the phenotypes of interest. LMMs
also include a weak noise contribution along the genes,
which translates to correlated noise in the space of sam-
ples. This models the relatedness between individuals in
the overall population. The resulting model thus aims to
find a sparse linear weight vector while automatically ac-
counting for spurious correlations due to relatedness be-
tween samples [5, 9].

Although successful, LMMs have been restricted to the lin-
ear regression case. We generalize this modeling paradigm
to the case of binary classification. Probit regression forms
the basis of our approach [14], where we add an `1-norm
(Lasso) regularizer that guarantees that the resulting weight
vectors are sparse [15]. However, in contrast to simple
probit regression (and following the logic of LMMs), we
consider a correlated multivariate noise variable that corre-
lates the binary labels. This way, our approach generalizes
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two popular methods which result as limiting cases: `1-
norm probit regression (for uncorrelated noise), and Gaus-
sian process (GP) probit classification [16] (when the linear
weight vector is zero).

Our more complex model suffers from intractable infer-
ence in high dimensions, and we therefore have to resort
to approximations. We make use of variational Bayesian
methods and propose two algorithms. Our first algorithm
operates in sample space and makes use of approximate
Gaussian quadrature [17]. Our second algorithm operates
in feature space and is amenable to data subsampling and
therefore scalable to very large sample sizes. Which algo-
rithm is preferable depends on the number of data points
and the feature space dimensionality.

In an experimental study on genetic data, we show the su-
periority of our approach over other methods. Compared
to uncorrelated probit regression, our sparse features are up
to 40% less correlated with the first principal component of
the noise covariance that induces the spurious correlations
we seek to suppress. Furthermore, compared to the LMM
Lasso [18], probit regression, and GP classification [16],
our approach yields up to 5% higher prediction accuracies.
In a computer malware experiment we show that our ap-
proach generalizes beyond statistical genetics.

Our paper is organized as follows. Section 2 introduces
the modeling framework. We first discuss the confound-
ing problem in genetics and introduce two versions of
our model: a simplified version based on a maximum-
likelihood estimate of the noise variable, and the fully cor-
related model. Section 3 then contains the mathematical
details of the inference procedure. In Section 4 we then ap-
ply our method to extract features associated with diseases
and traits from confounded genetic data. We also test our
method on a data set that contains a mix of different types
of malicious computer software data.

2 Correlated Probit Regression

We first review the problem of spurious correlations due to
population structure in statistical genetics in Section 2.1. In
Section 2.2, we review LMMs and introduce a correspond-
ing model for classification. In Section 2.3 we connect our
approach with other models.

2.1 Modeling Spurious Correlations via Kernels

The problem of spurious correlations is fundamental in
statistics. Spurious correlations may be due to confounding
or selection bias. Confounding is induced by a common un-
observed cause that underlies both the predictor variables
and the traits. Selection bias emerges arises from taking
non-random subsets of the population, where some mem-
bers are less likely to be subsampled than others [19]. Both
effects may result in the phenomena of spurious correla-

tions which we can treat here simultaneously [5, 6, 7].

Population structure [9] implies that due to common ances-
try, genes of individuals that are related co-inherit a large
number of genes, making them more similar to each other,
whereas the genes of people of unrelated ancestry are ob-
tained independently, making them more dissimilar. Pop-
ulation structure is the root of many unwanted biases. For
example, when data is collected only in selected geograph-
ical areas (such as in specific hospitals), one thereby intro-
duces a selection bias into the sample, meaning that the col-
lected genes do not represent the overall population. This
can heavily distort the prediction quality of a classifier [13].

Another problem is that people who live geographically
close often share other factors, such as similar environmen-
tal factors or culture. This, in turn, can lead to similar phe-
notypes (such as overweight, drinking habits, or diabetes).
Thus, because genes correlate with location and location
may correlate with specific phenotypes, there is a resulting
correlation between genes and these phenotypes that does
not have a causal interpretation—another manifestation of
confounding by population structure [20]. It is an active
area of research to find models that are less prone to spu-
rious correlations [13]. In this paper, we present such a
model for the setup of binary classification.

A popular approach to correcting for spurious correlations
relies on similarity kernels, or kinship matrices [9]. Given
n samples, we can construct an n × n matrix K that quanti-
fies the similarity between samples based on some arbitrary
measure. In the case of confounding by population struc-
ture, one typically chooses Ki j = X>i X j, where Xi is a vec-
tor of genetic features of individual i. As Ki j contains the
scalar products between the genetic vectors of individuals
i and j, it is a sensible measure of genetic similarity. As
another example, when correcting for confounding by age,
then we can choose K to be a matrix that contains 1 if two
individuals have the same age, and zero otherwise. Details
of constructing similarity kernels can be found in [9]. Next,
we explain how the similarity matrix can be used to correct
for confounding.

2.2 The Correlated Probit Regression (CPR) Model

Our model builds on the LMM-Lasso [18], an important
method of statistical genetics to limit the impact of con-
founding. While the LMM-Lasso relies on linear regres-
sion, we generalize this approach to the much more in-
volved classification setup, where the target values are bi-
nary. The correlated probit model is

yi = sign
(
X>i w + εi

)
, ε = (ε1, . . . , εn)> ∼ N(0,Σ). (1)

In the special case of Σ = I, this is just the ordinary (un-
correlated) probit model. In the following, we refer to this
model as Correlated Probit Regression (CPR). For now, we
assume that the covariance matrix Σ is fixed and known.



In our empirical studies we use the parametrization Eq. 13
where the parameters are estimated from the data.

We now derive an objective function to find an estimate
of the model parameter w. To simplify the notation, we
will without loss of generality assume that all observed bi-
nary labels yi are 1. The reason why this assumption is no
constraint is that we can always perform a linear transfor-
mation to absorb the sign of the labels into the data matrix
and noise covariance1. Thus, when working with this trans-
formed data matrix and noise covariance, our assumption is
satisfied.

The likelihood function, thus, is the probability that all
transformed labels are 1. This is satisfied when X>i w + εi >
0. When integrating over all realizations of noise, the re-
sulting (marginal) likelihood is

P(∀i : yi = 1|w) = P(∀i : X>i w + εi > 0|w)

=

∫
Rn

+

N(ε; X>w,Σ) dnε. (2)

The marginal likelihood is hence an integral of the multi-
variate Gaussian over the positive orthant. In Section 3, we
will present efficient approximations of this integral. Be-
fore we get there, we further characterize the model.

Next, we turn the correlated probit model into a model for
feature selection. We are interested in a point estimate of
the weight vector w that is sparse, i.e. contains zeros almost
everywhere. This is well motivated in statistical genetics
for phenotypes or diseases that are believed to be caused
by a small number of genes. Sparsity is achieved using
the Lasso [15], where we add an `1-norm regularizer to the
negative marginal likelihood:

L(w) = − log
∫
Rn

+

N(ε; X>w,Σ) dnε + λ0||w||11. (3)

The fact that the noise variable ε and the weight vector w
have different priors or regularizations makes the model
identifiable and lets us cleanly distinguish between linear
effects and effects of correlated noise. It is easy to show
that the objective function Eq. 3 is convex.

2.3 Connection to Other Models

Before we come to inference, we point out how our ap-
proach connects to other methods. When removing the pro-
bit likelihood, the model becomes the LMM-Lasso [18],
hence P(Y |w) = N(Y; X>w,Σ). This model has shown to
improve selection of true non-zero effects as well as predic-
tion quality [18]. Our model is a natural extension of the
LMM-Lasso to binary outcomes, such as the disease status
of a patient. As we explain in this paper, inference of our
model is, however, much more challenging than in [18].

1To this end, we apply the transformations X ← diag(y)X and
Σ← diag(y)Σdiag(y).

Furthermore, by construction, our model captures two lim-
iting cases: uncorrelated probit regression and Gaussian
process (GP) classification. To obtain uncorrelated pro-
bit regression, we simply assume a covariance matrix pro-
portional to unity. To obtain GP classification, we sim-
ply omit the fixed effect (i.e., we set w = 0 in Eq. 2)
so that our model likelihood becomes P(Y = Yobs|w) =∫
Rn

+

N(ε; 0,Σ) dnε, where hence the noise variable ε plays
the role of the latent function f in GPs [16]. We will com-
pare our method to all three related models in the experi-
mental part of the paper and show enhanced accuracy.

3 Inference Algorithms

We derive three different algorithms to do inference in the
correlated probit model. We want to optimize the objective
function of CPR Eq. 3. This goal comes along with two
major problems:

1. The `1-norm regularizer for feature selection is not
differentiable everywhere.

2. The likelihood contains an intractable, high-
dimensional integral.

Our first algorithm, CPR, directly optimizes Eq. 3 by em-
ploying expectation propagation (EP) [21] and the alternat-
ing direction method of multipliers (ADMM) [22]. We note
that other means of approximate inference, such as MCMC
for truncated Gaussian distributions [23] are also viable op-
tions. Because this algorithm relies on approximating mo-
ments of a truncated Gaussian integral in n dimensions, it
is restricted by the dimensionality of the data space n.

We also propose two methods that scale more favorably
with n, but have other constraints. Our second proposed
method relies on a MAP-approximation of the confounder
instead of marginalizing it out. Although it is very fast, its
prediction performance is substantially worse than CPR,
as we show experimentally. Our third method, Stochas-
tic Gradient Correlated Probit Regression (SG-CPR), has
the same benefits of scalability. It makes use of recent
breakthroughs in scalable MCMC methods [24, 25, 26]. As
this algorithm samples in feature space, its performance de-
pends on the dimensionality d.

3.1 Algorithm 1: CPR

CPR is a EM-type algorithm [27]. In the outer loop (the M-
step), we follow gradients to optimize the objective. Since
this objective function has an `1-norm regularizer, we have
to split this outer optimization routine into two parts, one
that optimizes the likelihood and one that optimizes the
regularizer. This is described in 3.1.1. The inner loop (the
E-step) consists of computing the gradient and the Hessian
of the likelihood term by means of approximate inference,
which is described in Sections 3.1.2 and 3.1.3.



3.1.1 M-step

The `1-norm in the objective function Eq. 3 prevents us
from directly applying gradient based methods such as
Newton’s method. A solution is given by ADMM that in-
volves a generalized objective:

L(w, z, η) := − log
∫
RN

+

N(ε; X>w,Σ)dnε + λ0||z||11

+ η>(w − z) +
1
2

c||w − z||22.

We minimize over w and z and maximize over η. In al-
ternating between the minimization updates for w, z and
a gradient step in η, we solve the original problem [22].
While the updates for z and η have analytic solutions, we
compute the updates for w by numerical optimization. The
part of the ADMM objective L(w, z, η) depending on w,
called L(w) for brevity, is effectively `2-norm regularized,
enabling us to compute the gradient and the Hessian. This
allows us to apply Newton’s Method to obtain the ADMM
update in w.

3.1.2 E-step

The inner loop of the EM-algorithm amounts to computing
the gradient and Hessian of L(w, z, η). These are not avail-
able in closed-form, but in terms of the first and second
moment of a truncated Gaussian density.

Since computing the derivates of the linear and quadratic
term is straightforward, we focus on L0(w) :=
− log

∫
RN

+

N(ε; X>w,Σ)dnε, which contains the intractable
integral. In the following, we use the short hand notation

µ ≡ µ(w) = X>w. (4)

It is convenient to introduce the following probability dis-
tribution:

p(ε|µ,Σ) =
1[ε ∈ Rn

+]N(ε; µ,Σ)∫
Rn

+

N(ε; µ,Σ) dnε
. (5)

Above, 1[·] is the indicator function. Eq. 5 is just the mul-
tivariate Gaussian, truncated and normalized to the positive
orthant; we call it the posterior distribution. We further-
more introduce

µp(w) = Ep(ε |µ(w),Σ) [ε] , (6)

Σp(w) = Ep(ε |µ(w),Σ)

[
(ε − µp(w))(ε − µp(w))>

]
.

µp and Σp are the mean and the covariance of the truncated
multivariate Gaussian, as opposed to µ and Σ which are the
non-truncated ones.

In the following we abbreviate µp ≡ µp(w) and Σp ≡ Σp(w),
and write ∆µ = µp − µ for the difference between the

means of the posterior (the truncated Gaussian) and the un-
truncated Gaussian. The gradient and Hessian ofL0(w) are
given by

∇wL0(w) = ∆µΣ−1X>, (7)

H0(w) = −X[Σ−1(Σp − ∆µ∆µ>)Σ−1 − Σ−1]X>.

Note that the variable w enters through Σp(w) and ∆µ(w).
Next, we describe how we approximate the intractable ex-
pectations involved in Eq. 7.

3.1.3 Optimizing the Objective Function

In Eq. 7 we have expressed the gradient and Hessian of
L0(w) in terms of the first and second moment of the pos-
terior Eq. 5. The problem is that computing the moments
involves intractable expectations over this distribution. We
employ EP [17] to approximate these expectations. Note
that also other approximate inference schemes are possible,
such as variational inference or sampling methods [16].

EP approximates moments of the posterior p(ε|µ,Σ) in
terms of a variational distribution q(ε), approximately min-
imizing the Kullback-Leibler divergence,

q∗(ε|µq∗ ,Σq∗ )

= arg min
q

(
Ep[log p(ε|µ,Σ)] − Ep[log q(ε |µq,Σq)]

)
.

The variational distribution q∗(ε) is an un-truncated Gaus-
sian q∗(ε; µq∗ ,Σq∗ ) = N(ε; µq∗ ,Σq∗ ), characterized by the
variational parameters µq∗ and Σq∗ . We approximate the
mean and covariance of the posterior p in terms of the vari-
ational distribution, µp ≈ µq∗ , and Σp ≈ Σq∗ . We warm-start
each gradient computation with the optimal parameters of
the earlier iteration.

Algorithm 1 summarizes our procedure. We denote the EP
algorithm for approximating the first and second moment
of the truncated Gaussian by EP(µ,Σ). Here, µ and Σ are the
mean and covariance matrix of the un-truncated Gaussian.
The subroutine returns the first and second moments of the
truncated distributions µq and Σq. When initialized with
the outcomes of earlier iterations, this subroutine converges
within a single EP loop.

Our algorithm thus consists of three nested loops; the outer
ADMM loop, containing the Newton optimization loop for
computing the update in w and the inner EP loop, which
computes the moments of the posterior. We choose stop-
ping criterion 1 to be the convergence criterion proposed
by Boyd [22] and choose criterion 2 to be always fulfilled,
i. e. we perform only one Newton optimization step in the
inner loop. Our experiments showed that doing only one
Newton optimization step, instead of executing until con-
vergence, is stable and leads to great speed improvements.
ADMM is known to converge even when the minimizations
in the ADMM scheme are not carried out exactly (see e.g.
[28]).



Algorithm 1 CPR

X = y ◦ X̃ \\pre-process the data
Σ = diag(y) Σ̃ diag(y)
repeat
\\get wk+1 by EP and Newton’s Method
initialize w = wk

repeat
(µq,Σq)← EP(X>w,Σ)
∆µ = µq − X>w
g = ∆µ>Σ−1X> + c(w − zk + ηk)>

H = X[Σ−1 − Σ−1(Σq − ∆µ∆µ>)Σ−1]X> + cI
w = w − αtH−1g

until criterion 2
\\ADMM updates
wk+1 = w
zk+1 = S λ/c(wk+1 + ηk) \\soft thresholding
ηk+1 = ηk + wk+1 − zk+1

until criterion 1

3.2 Algorithm 2: CPR-MAP

For simplicity, we use covariance matrices Σ of a special
structure, which allows us to derive an alternative formula-
tion of the correlated probit model2. In particular, we as-
sume that Σ is a combination of diagonal noise and a linear
kernel of the data matrix,

Σ = λ1I + λ2X>X. (8)

The linear kernel X>X measures similarities between genes
and therefore models the effect of genetic similarity be-
tween samples due to population structure. We use the fol-
lowing Gaussian integral identity:

L(w) = − log
∫
Rn

+

N(ε; X>w, λ1I + λ2X>X) dε + λ0||w||11

= − log
∫
Rd
N(w′; 0, λ2I)

∫
Rn

+

N(ε; X>(w + w′), λ1I)dε dw′

+ λ0||w||11
c
= log

∫
Rd

p(y,w′|w) dw′ + λ0||w||11, (9)

where

p(y,w′|w) ∝ N(w′; 0, λ2I)
n∏

i=1

Φ

(
X>i (w + w′)
√
λ1

)
.

Above, Φ(·) is the cumulative standard normal distribution
function. We have introduced the new Gaussian noise vari-
able w′. Conditioned on w′, the remaining integrals fac-
torize over n. However, since w′ is unobserved (hence

2Note that the approach can be easily generalized to arbi-
trary covariance matrix by considering the Cholesky decompo-
sition Σ = BB>.

marginalized out), it correlates the samples. We interpret
w′ as a confounder.

The simplest approximation to Eq. 9 is to substitute the in-
tegral over w′ by its maximum a posteriori (MAP) value,
leading to the new objective function:

L(w,w′) = −

n∑
i=1

log Φ

(
X>i (w + w′)
√
λ1

)
+

1
2λ2
||w′||22 + λ0||w||11.

(10)

Under the MAP approximation, the likelihood contribution
to the objective function becomes completely symmetric in
w and w′: only the sum w + w′ enters. The difference be-
tween the two weight vectors w and w′ in this approxima-
tion is only due to the different regularizers: while w′ has
an `2-nrom regularizer and is therefore dense, w is `1-norm
regularized and therefore sparse.

For optimizing the MAP approximated objective function
Eq. 10 jointly in w and w′, we introduce a block coordinate
descent scheme alternating between updates in w and w′.
For updating w′ we use gradient descent, while for updating
w we employ ADMM (c.f. Section 3.1.1). Note that the
procedure could be made faster by using a second-order
optimization method for obtaining the updates in w′.

Under the MAP approximation, every feature gets a small
non-zero weight from w′, and only selected features get a
stronger weight from w. The idea is that w′ models the
population structure, which affects all genes. In contrast,
we are interested in learning the sparse weight vector w,
which has a causal interpretation because it involves only a
small number of features.3

The MAP approximation is computationally more conve-
nient, but it has its limits. In the original correlated probit
model in Eq. 1, we marginalize over the confounder, which
is more expensive. In contrast, under the MAP approxi-
mation we optimize over w′ and the the objective function
factorizes over n, which means that we have broken the cor-
relations between the samples. This comes at the cost of re-
duced prediction performance. Since the MAP estimate of
the confounder does not capture the full information of its
distribution, the MAP probit model tends to generalize not
as well as the (full) correlated probit model. We compare
both approaches experimentally in Section 4.

3.3 Algorithm 3: SG-CPR

Stochastic gradient Monte Carlo methods are an active area
of research in scalable Bayesian inference. These meth-
ods approximately sample from a posterior by using only a

3Note that the interplay of two weight vectors is different from
an elastic net regularizer.



subset of data for generating a sample and, therefore, being
scalable to big datasets. This is done by using stochastic
optimization to provide efficient proposals for Metropolis-
Hastings algorithms with high acceptance rates. We pro-
pose two versions of SG-CPR, one builds on Stochastic
Gradient Langevin Dynamics (SGLD) [24] and the other
on Constant Stochastic Gradient Descent (c-SGD) [25].
These methods assume that the likelihood factorizes, con-
ditioned on the global variables. Up to a constant, the log
posterior is

log p(θ|y) c
=

n∑
i=1

log p(yi|θ) + log p(θ).

Let S be a set of S random indices drawn uniformly at ran-
dom from the index set {1, . . . , n}. The stochastic gradient
w.r.t. the minibatch S of the log likelihood term is

ĝS(θ) =
1
S

∑
i∈S

∇θ log p(yi|θ).

SGLD and c-SGD work as follows. SGLD performs de-
creasing stochastic gradient step on the negative log joint
distribution, but adds artificial noise to prevent convergence
to the optimum. Instead, the algorithm converges to a sta-
tionary distribution, which can be shown to be the poste-
rior [24]. Constant SGD, on the other hand, only approxi-
mates the posterior. It converges faster because it operates
with constant step sizes.

The following formula summarizes the two methods:

SGLD : θi+1 = θi +
γt

2
ĝS(θt) + ηt, ηt ∼ N(0, γt),

c-SGD: θi+1 = θi + γ∗ĝS(θt), (11)

where γt is a suitable decreasing learning rate for SGLD.
For c-SGD, it was shown in [25] that the optimal constant
learning rate γ∗ that best approximates the posterior equals

2dS
nTr(E[ĝĝT ]) . This definition involves the minibatch size S ,
feature space dimension d, and the stochastic gradient noise
covariance near the optimum, E

[
ĝĝT

]
.

We now explain how SGLD and c-SGD can be used for in-
ference in the correlated probit model. Recall that the aim
is to find the MAP estimate of the model by optimizing the
objective function L(w) Eq. 3. In Section 3.2, we intro-
duced an auxiliary variable w′ and obtained the identity

L(w) c
= log

∫
Rd

p(y,w′|w) dw′ + λ0||w||11. (12)

L(w) can be optimized using the EM-algorithm [27],

E-step: Compute p(w′|y,wt−1)

M-step: wt = argmaxw Ep(w′ |y,wt−1)[log p(y,w′|w)] + λ0||w||11,

which involves the posterior of the confounder p(w′|y,w).
This posterior can be approximated using SGLD or c-SGD.
Since this algorithm is based on stochastic gradient descent
SG-CPR scales to hundreds of thousands data points.

4 Empirical Analysis and Applications

We studied the performance of our proposed methods in
experiments on both artificial and real-world data. We con-
sidered the versions CPR (the full correlated probit model
as specified in Eq. 9) and CPR-MAP (its MAP approxima-
tion as contained in Eq. 10). An experimental analysis of
SG-CPR is left to future work.

Our data was taken from the domains of statistical genetics
and computer malware prediction. Our achievements can
be summarized as follows:

• We compare against 3 competing methods, includ-
ing uncorrelated probit regression, GP classification
and the LMM Lasso. In all considered cases, CPR
achieves higher classification performance.

• The features that our algorithm finds are up to 40%
less confounded by population structure.

• CPR outperforms its MAP approximation across all
considered datasets. Yet, in many cases CPR-MAP is
a cheap alternative to the full model.

4.1 General Experimental Setup

For the real-world and synthetic experiments, we first need
to make a choice for the class of kernels that we use for
the covariance matrix. We choose a combination of three
contributions,

Σ = λ1I + λ2X>X + λ3Σside. (13)

The third term is optional and depends on the context; it is
a kernel that we extract from side information in the form
of an additional feature matrix X′, where we choose Σside

as an RBF kernel [29] on top of the side information X′.
Note that this way, the data matrix enters the model both
through the linear effect but also through the linear kernel.
We evaluate the methods by using n instances of the dataset
for training and splitting the remaining examples equally
into validation and test sets. This process is repeated 50
times, over which we report on average accuracies or areas
under the Receiver Operating Characteristic (ROC) curve
(AUCs) as well as standard errors [30].

The hyper parameters λk in Eq. 13, together with the regu-
larization parameter λ0, were determined on the validation
set, using grid search over a sufficiently large parameter
space (optimal values are attained inside the grid; in most
cases λk ∈ [0.1, 1000] for k = 0, 1, 2, 3). For all datasets,
the features were centered and scaled to unit standard devi-
ation, except in Section 4.4, where they are binary.

In Sections 4.3 and 4.4, we show that including a linear ker-
nel into the covariance matrix leads to top features which
are less correlated with the population structure in compar-
ison to the features of uncorrelated probit regression. The



correlation plots4 in Fig. 4 show the mean correlation of the
top features with population structure and the correspond-
ing standard errors.

4.2 Simulated Data

We generated n = 200 synthetic data points in d = 50 di-
mensions as follows. We generate a weight vector w ∈ Rd

with k entries being 1, and the other d − k entries being 0,
where 1 ≤ k ≤ d. We then create a random covariance
matrix Σside ∈ R

n×n, which serves as side information ma-
trix5. We draw n points X = {x1, . . . xn} independently from
a uniform distribution over the unit cube [−1, 1]d and create
the labels according to the probit model Eq. 1, using Σside
as covariance matrix. We reserve 100 samples for training
and 50 for validation and testing, respectively. As a bench-
mark we introduce the oracle classifier, where we use the
correlated probit model (with covariance matrix Σside) but
skip the training and instead use the true underlying w for
prediction.
For several 1 ≤ k ≤ d, we generate a dataset according
to the above described procedure. In Fig. 1, we report on
the so-achieved accuracies with respect to the percentage
of non-zero features ( k

d ). We observe that in the sparse
scenarios (≤ 20% non-zero features), GP classification and
LMM-Lasso are clearly outperformed by CPR, achieving
an accuracy up to 10 percentage points and 23 percentage
points higher, respectively. Due to being `1-norm regu-
larized and therefore, having the capability of exploiting
sparsity, uncorrelated probit regression performs best in
this regime among the competitors, but still substantially
worse than CPR. LMM-Lasso is also `1-norm regularized
but is not designed for a classification setting. Therefore,
it cannot beat uncorrelated probit regression. In the dense
scenarios, CPR outperforms LMM-Lasso (by 1 to 4 per-
centage points) and performs similarly well to GP classi-
fication, which also takes the correlation structure into ac-
count. In this scenario, uncorrelated probit regression is

4The correlation plots in Fig. 4 are created according to [8] as
follows. First, we randomly choose 70% of the available data as
training set and obtain a weight vector w by training. We com-
pute the empirical Pearson correlation coefficient of each feature
with the first principle component of the linear kernel on top of
the data. This is a way to measure the correlation with the pop-
ulation structure [31]. We define the index set I by taking the
absolute value of each entry of w and sorting them in descending
order. We now sort the so-obtained list of correlation coefficients
with respect to the index set I and obtain a resorted list of corre-
lation coefficients (c1, . . . , cn). In the last step, we obtain a new
list (ĉ1, . . . , ĉn) by smoothing the values, computing ĉi := 1

i

∑i
k ck.

Finally, we plot the values (ĉ1, . . . , ĉn) with respect to I. This
procedure was repeated 30 times for different random choices of
training sets.

5The covariance matrix was created as follows. The ran-
dom generator in MATLAB version 8.3.0.532 was initialized
to seed = 20 using the rng(20) command. The matrix
Σside was realized in two steps via A=2*rand(50,n)-1 and
Σside=3*A’*A+0.6*eye(200)+3*ones(200,200).

clearly worse than the other methods, because it does not
take the correlation structure into account. We observe that
in all scenarios the prediction performance of CPR-MAP is
between uncorrelated probit regression and CPR.

In Fig. 2, we inspect the computed feature weights (green
dots) of `1-norm regularized and `2-norm regularized CPR,
respectively. The blue solid line represents the ground truth
(the true underlying weight vector w with k = 10 entries
non-zero). We observe that the `1-norm regularized probit
model finds the true weights without suffering from large
noise as the `2-norm regularized counterpart does.
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Figure 1: Toy: Average accuracies as a function of the number of
true non-zero features in the generating model. (Proposed meth-
ods: CPR and CPR-MAP)
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Figure 2: Toy: Ground truth (blue solid line) and feature weights
(green dots) of `1-norm (Left) and `2-norm (Right) regularized
correlated probit regression.

4.3 Tuberculosis Disease Outcome Prediction From
Gene Expression Levels

We obtained the dataset by [32] from the National Center
for Biotechnology Information website 6, which includes
40 blood samples from patients with active tuberculosis
as well as 103 healthy controls, together with the tran-
scriptional signature of blood samples measured in a mi-
croarray experiment with 48,803 gene expression levels,
which serve as features for our purposes. Also available
is the age of the subjects when the blood sample was taken,
from which we compute Σside

7. All competing methods are
trained by using various training set sizes n ∈ [40, 80]. To
be consistent with previous studies (e. g. [8]), we report
on the area under the ROC curve (AUC), rather than accu-
racy, where we vary the hyperparameters λk. The results
are shown in Fig. 3, left.

We observe that CPR achieves a consistent improvement
over its uncorrelated counterpart (by up to 12 percentage

6http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE19491

7We compute Σside as RBF kernel on top of the side informa-
tion age using bandwidth σ = 0.2.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19491
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19491


points), GP classification (by up to 3 percentage points),
LMM-Lasso (by up to 7 percentage points) and CPR-MAP
(by up to 7 percentage points). In Fig. 4, left, we show the
correlation of the top features with population structure (as
confounding factor) for correlated and uncorrelated probit
regression. The plot was created as explained in Section
4.1. We find that the features obtained by CPR show much
less correlation with population structure than the features
of uncorrelated probit regression. By inspecting the corre-
lation coefficients of the first top 10 features of both meth-
ods, we observe that the features found by CPR are 40 %
less correlated with the confounder. This is because pop-
ulation structure was built into our model as a source of
correlated noise.
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Figure 3: Top, TBC: Average AUC in the tuberculosis experiment
with respect to the training set size. Bottom, Malware: Average
ROC curves for the computer malware detection experiment.

4.4 Malicious Computer Software (Malware)
Detection

We experiment on the Drebin dataset8 [33], which con-
tains 5,560 Android software applications from 179 differ-
ent malware families. There are 545,333 binary features;
each feature denotes the presence or absence of a certain
source code string (such as a permission, an API call or a
network address). It makes sense to look for sparse fea-
ture vector [33], as only a small number of strings are truly
characteristic of a malware. The idea is that we consider

8http://user.informatik.uni-goettingen.de/

˜darp/drebin/download.html
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Figure 4: Correlation of the top features in the tuberculosis ex-
periment (Top) and in the computer malware detection experiment
(Bottom). The x-axis is sorted by descending absolute weights.

populations of different families of malware when train-
ing, and hence correct for the analogue of genetic popu-
lation structure in this new context, that we call “malware
structure”. We concentrate on the top 10 most frequently

CPR CPR-MAP Uncorr. Probit GP LMM-Lasso
74.9 ± 0.2 73.1 ± 0.4 67.2 ± 0.3 69.8 ± 0.3 66.45 ± 0.3

Table 1: AUC0.1 attained on the malware dataset.

occurring malware families in the dataset9. We took 10
instances from each family, forming together a malicious
set of 100 and a benign set of another 100 instances (i.e.,
in total 200 samples). We employ n = 80 instances for
training and stratify in the sense that we make sure that
each training/validation/test set contains 50% benign sam-
ples and an equal amount of malware instances from each
family. Since no side information is available, we only use
a linear kernel and the identity matrix as components for
the correlation matrix. We report on the (normalized) area
under the ROC curve over the interval [0, 0.1] and denote
this performance measure by AUC0.1. In Fig. 3, right, we
show the ROC curves and in Table 1 the achieved AUC0.1.

We observe that correlated probit regression (CPR)
achieves a consistent improvement in terms of AUC0.1 over
the competitors (by up to 8.4 percentage points). Further-
more, in Fig. 4, right, we plot the correlation of the top
features of correlated and uncorrelated probit regression
with population structure. We observe that CPR leads to
features, which are much less correlated with the malware

9Geinimi, FakeDoc, Kmin, Iconosys, BaseBridge, GinMas-
ter, Opfake, Plankton, FakeInstaller, DroidKungFu.

http://user.informatik.uni-goettingen.de/~darp/drebin/download.html
http://user.informatik.uni-goettingen.de/~darp/drebin/download.html


structure.

4.5 Flowering Time Prediction From Single
Nucleotide Polymorphisms

We experiment on genotype and phenotype data consisting
of 199 genetically different samples from the model plant
Arabidopsis thaliana [34]. The genotype of each sample
comprises 216,130 single nucleotide polymorphism (SNP)
features. The phenotype that we aim to predict is early or
late flowering of a plant when grown at ten degrees centi-
grade. The original dataset contains the flowering time for
each of the 199 genotypes. We split the dataset into the
lower and upper 45%-quantiles of the flowering time and
removed the middle 10%. We then binarized the labels, re-
sulting in a set of 180 instances from which we use n = 150
instances for training. The results are reported in Table 2

CPR CPR-MAP Uncorr. Probit GP LMM-Lasso
84.1 ± 0.2 83.6 ± 0.3 83.5 ± 0.2 83.6 ± 0.2 79.7 ± 0.2

Table 2: Flowering time prediction experiment (AUCs).

and show that CPR has a slight advantage of at least 0.5
percentage points in AUC over the competitors.

An analysis restricted to the ten SNPs with largest abso-
lute regression weights in our model showed that they lie
within four well-annotated genes that all convincingly can
be related to flowering, structure and growth: the gene
AT2G21930 is a growth protein that is expressed during
flowering, AT4G27360 is involved in microtubule motor
activity, AT3G48320 is a membrane protein, involved in
plant structure, and AT5G28040 is a DNA binding protein
that is expressed during flowering.

5 Related Work

We have already commented on how our model relates to
uncorrelated probit regression, GP classification, and lin-
ear mixed models. A common generalized linear model
for classification is the logistic regression model [35]. Ac-
counting for correlations in the data is non-straightforward
[36]; one has to resort to approximate inference techniques,
including the Laplace and mean field approximations that
have been proposed in the context of GP classification [16],
or the pseudo likelihood method, which has been proposed
in the context of generalized LMMs [37]. To our knowl-
edge feature selection has not been studied in a correlated
logistic setup. On the other hand, without correlations,
there is numerous work on feature selection in Lasso re-
gression [15]. Alternative sparse priors to the Lasso have
been suggested in [38] for unsupervised learning (again,
without compensating for confounders). The joint problem
of sparse estimation in a correlated noise setup has been
restricted to the linear regression case [39, 2, 18], whereas
we are interested in classification. For classification, we re-
mark that the ccSVM [8] deals with confounding in a dif-

ferent way and it does not yield a sparse solution. Finally,
our algorithm builds on EP for GP classification [16, 17],
but note that GP classification does not yield sparse esti-
mates and, therefore, gives no insights in the underlying
structure of the problem.

6 Conclusion

We presented a novel algorithm for sparse feature selection
in binary classification where the training data show spuri-
ous correlations due to confounding. Our model is inspired
by the LMM of linear regression, where confounding is
modeled in terms of a correlated Gaussian noise variable.
While generalizing the LMM paradigm to binary classifica-
tion poses technical challenges as exact inference becomes
intractable, our solution relies on approximate inference.
We demonstrated the use of our approach on two data sets
from the field of statistical genetics; a field plagued by spu-
rious correlations of various sorts. We showed that our al-
gorithm finds features which show less spurious correla-
tions and, therefore, lets us finds signals in the data that
hopefully have a better causal interpretation.

Our CPR algorithm can be seen as a hybrid between an `1-
norm regularized probit classifier (enforcing sparsity) and a
GP classifier that takes as input an arbitrary noise kernel. It
distinguishes between sparse linear effects from non-sparse
effects due to confounding as modeled in terms of corre-
lated Gaussian noise. We showed that our model selects
features that are less correlated with the confounders (de-
fined as the first principal components of the noise covari-
ance) and therefore allows to find sparse effects in the data
which has a causal interpretation.

In the future we will further explore data subsampling
strategies of our approach and thereby further improve the
scalability. Also, we plan to extend the correlated probit
model towards a multi-class version. Another important di-
rection is to automatically learn the noise covariance struc-
ture from the data, where methods borrowed from Gaussian
process classification might help.
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