Machine Learning in Thermodynamics: Prediction of Activity Coefficients by Matrix Completion

Fabian Jirasek ${ }^{1,2 \dagger^{*}}$, Rodrigo A. S. Alves ${ }^{3 \dagger}$, Julie Damay ${ }^{4 \dagger}$, Robert A. Vandermeulen ${ }^{3}$, Robert Bamler ${ }^{1}$, Michael Bortz ${ }^{4 \frac{7}{7}}$, Stephan Mandt ${ }^{1 \ddagger}$, Marius Kloft $t^{3 \ddagger}$, Hans Hasse ${ }^{2 \ddagger}$
${ }^{1}$ Department of Computer Science, University of California, Irvine, USA
${ }^{2}$ Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Germany
${ }^{3}$ Machine Learning Group, Department of Computer Science, TU Kaiserslautern, Germany
${ }^{4}$ Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
${ }^{\dagger}$ These authors contributed equally to this work.
${ }^{\ddagger}$ These authors jointly directed this work.
*Correspondence to: fabian.jirasek@mv.uni-kl.de

Abstract

Activity coefficients, which are a measure of the non-ideality of liquid mixtures, are a key property in chemical engineering with relevance to modeling chemical and phase equilibria as well as transport processes. Although experimental data on thousands of binary mixtures are available, prediction methods are needed to calculate the activity coefficients in many relevant mixtures that have not been explored to-date. In this report, we propose a probabilistic matrix factorization model for predicting the activity coefficients in arbitrary binary mixtures. Although no physical descriptors for the considered components were used, our method outperforms the state-of-the-art method that has been refined over three decades while requiring much less training effort. This opens perspectives to novel methods for predicting physico-chemical properties of binary mixtures with the potential to revolutionize modeling and simulation in chemical engineering.

In this work, we describe a novel application of Machine Learning (ML) to the field of physical chemistry and thermodynamics: the prediction of physico-chemical properties of binary liquid mixtures by matrix completion. We focus on the prediction of a single property: the so-called activity coefficient, which is a measure of the non-ideality of a liquid mixture and of enormous relevance in practice. The interesting aspect of our approach is that no expert knowledge about the components that make up the mixture was used: all we needed was an incomplete, sparse data set of binary mixtures and their measured activity coefficients that our method was able to successfully complete. We show that this simple approach outperforms an established procedure that has been the state of the art for several decades.

ML approaches to chemical and engineering sciences date back more than 50 years ago, but the genuine exploitation of the potential of ML in these fields has only recently begun ${ }^{1}$. An overview of recent advances in chemical and material sciences has, e.g., been given by Ramprasad et al. ${ }^{2}$ and Butler et al. ${ }^{3}$ ML has already been used to predict physico-chemical properties of mixtures, including activity coefficients ${ }^{4-10}$. Most of these approaches are basically quantitative structureproperty relationships (QSPR) methods ${ }^{11}$ that use physical descriptors of the components as input data to characterize the considered mixtures and relate them to the property of interest by an ML algorithm, e.g., a neural network. However, the scope of these approaches is in general rather small.

Binary mixtures are of fundamental importance in chemical engineering. The properties of mixtures can in general not be described based on properties of the pure components alone. If, however, the respective properties of the binary constituent 'sub-mixtures' of a multi-component mixture are known, the properties of the multi-component mixture can often be predicted ${ }^{12}$. The knowledge of the properties of binary mixtures is therefore key for design and optimization of most processes in chemical engineering.

Since the experimental determination of physico-chemical properties is cumbersome, it is practically infeasible to study all binary mixtures of all relevant components. Consequently, even the largest data bases of physico-chemical properties, such as the Dortmund Data Bank (DDB) ${ }^{13}$ and the NIST Chemistry WebBook ${ }^{14}$, contain only information on a small fraction of the relevant mixtures. Predictive methods for physico-chemical properties are therefore needed to fill the gaps.

Predicting properties of binary liquid mixtures from first principles is not possible yet, except for simple cases. But there are phenomenological models for this, such as UNIFAC ${ }^{15,16}$ and COSMO-RS ${ }^{17}$, which are used for the prediction of activity coefficients. Process simulations often rely on the quality of these predictions and great effort has been taken over the last decades to parameterize these models using the available experimental data.

Activity coefficients in liquid mixtures are usually described as a function of temperature and composition; the pressure dependence is so small that it can be safely neglected in most cases. In the present study, we consider activity coefficients $\gamma_{i j}^{\infty}$ of solutes i at infinite dilution in solvents j at $298.15(\pm 1) \mathrm{K}$, which have been measured for many binary mixtures $i-j$. Our basic goal is to illustrate that ML techniques are useful for predicting such properties of binary mixtures in general.

Besides $\gamma_{i j}^{\infty}$, there are many other important properties of this type, e.g. diffusion coefficients or gas solubility as described by the Henry's law constant. As data on a given property of different binary mixtures can be represented conveniently in a matrix, the appropriate ML techniques for predicting such properties are matrix completion methods (MCM). To the best of our knowledge, they have never been used before for this purpose.

The activity coefficient at infinite dilution is a key property for process design and optimization, since the concentration dependence of both activity coefficients in the binary system $i-j$ can usually be predicted from $\gamma_{i j}^{\infty}$ and $\gamma_{j i}^{\infty}$. From the activity coefficients, the chemical potential of the components can be calculated, which is needed to describe chemical and phase equilibria as well as transport processes. Furthermore, as mentioned above, also activity coefficients in multicomponent systems can be predicted from information on binary systems ${ }^{12}$.

Experimental data on $\gamma_{i j}^{\infty}$ at $298.15(\pm 1) \mathrm{K}$ are available for several thousand solute-solvent combinations. These data can be represented as the entries of a matrix, whose rows and columns correspond to the solutes i and the solvents j, respectively. Figure 1 shows a schematic representation of the studied matrix, in which the mixtures for which experimental data are available are indicated by black squares. Filling the gaps, i.e., predicting $\gamma_{i j}^{\infty}$ for the missing entries, can be regarded as a matrix completion problem.

Figure 1. Schematic depiction of the matrix representing all possible binary mixtures of the studied 240 solutes and 250 solvents. The black squares indicate mixtures for which experimental data on the activity coefficients at infinite dilution $\gamma_{i j}^{\infty}$ at $298.15(\pm 1) \mathrm{K}$ are available in the 2019 version of the DDB^{13}.

Matrix completion is well studied in ML and has become popular through the Netflix Prize ${ }^{18}$, an open competition by Netflix that aimed at improving their recommender system for movies and TV shows. Subsequently, several matrix completion methods have been proposed and applied for various purposes ${ }^{19-23}$.

Matrix completion problems can be addressed with different approaches. One distinguishes between content-based filtering methods ${ }^{24}$ and collaborative filtering methods ${ }^{25}$. Besides the observed entries of the matrix, content-based filtering employs descriptors of the considered systems to complete the matrix. Collaborative filtering, by contrast, solely learns from the observed entries of the matrix, relying on pattern-recognition techniques to find similarities within the rows and the columns, to predict the missing entries of the partially observed matrix.

In this work, we use a collaborative filtering approach to matrix completion. Hence, we predict $\gamma_{i j}^{\infty}$ for the unobserved mixtures based only on $\gamma_{i j}^{\infty}$ of the observed mixtures, i.e., the mixtures for which experimental data are available. Furthermore, our matrix completion method follows the Bayesian approach and consists of three steps. In the first step, a generative probabilistic model of the data, i.e., $\gamma_{i j}^{\infty}$, as a function of initially unknown features of the components i and j is formulated. This generative model poses a probability distribution over all $\gamma_{i j}^{\infty}$ based on the component features. In the second step, the initially unknown component features are inferred by training the model to the observed $\gamma_{i j}^{\infty}$. This step is called 'inference' and requires the inversion of the generative model. Since our generative model is probabilistic, its inverse is also probabilistic and Bayesian inference yields the so-called 'posterior probability distribution', or short 'posterior', of the component features. From the posterior, among others, the most probable numbers for the features to describe the data are obtained. Since exact Bayesian inference is infeasible in nontrivial generative models, we resort to variational inference ${ }^{26-28}$ for an efficient approximation. We use the Stan framework ${ }^{29}$, a so-called probabilistic programming language, which automates the task of approximate Bayesian inference in a user-defined generative model. In the last step, the inferred component features are inserted in the generative model to obtain predictions for unobserved $\gamma_{i j}^{\infty}$. All modeling details, including the source code to run the Stan model, can be found in the Supporting Information. We emphasize the simplicity of the modeling framework, which can be extended in many ways.

For training the MCM, data on $\gamma_{i j}^{\infty}$ at $298.15(\pm 1) \mathrm{K}$ for mixtures of molecular components were taken from the present version (2019) of the Dortmund Data Bank (DDB) ${ }^{13}$. To allow an evaluation of the proposed MCM as described below, we considered only solutes i and solvents j for which at least two data points, i.e., data for at least two different mixtures, are available. This results in a data set with $I=240$ solutes and $J=250$ solvents. These were arranged in an $I \times J$ matrix with 60000 elements, corresponding to all possible binary solute-solvent combinations, cf. Figure 1. For 4094 entries, i.e., different binary mixtures, data are available in the present version of the DDB , which corresponds to 6.8% of all elements of the matrix. The remaining 55906 entries were predicted by the MCM based on the available entries. The study was carried out using $\ln \left(\gamma_{i j}^{\infty}\right)$
rather than $\gamma_{i j}^{\infty}$ for scaling purposes. Figure S1 in the Supporting Information shows the distribution of the $\ln \left(\gamma_{i j}^{\infty}\right)$ values in the data set. A list of the considered solutes and solvents is given in Tables S2 and S3 in the Supporting Information, respectively.

To evaluate the predictions of the MCM, we applied leave-one-out cross-validation ${ }^{30}$. Therefore, the MCM was trained on all observed entries except for one. This left-out entry was then predicted by matrix completion and compared to its experimental value reported in the DDB. This procedure was repeated for all observed entries. Figure 2 shows the predictions obtained with the MCM in a parity plot over the experimental data. A histogram representation of the results is given in Figure S 4 in the Supporting Information. For about 48.1% of the data, $\ln \left(\gamma_{i j}^{\infty}\right)$ is predicted with an absolute error below 0.1 ; about 79.6% the data are predicted with an absolute error below 0.3 . This performance is remarkable, especially considering that no physical descriptors of the components were used and that the experimental uncertainty of $\ln \left(\gamma_{i j}^{\infty}\right)$ is typically 0.1 to 0.2 .

Figure 2. Parity plot of the predictions for $\ln \left(\gamma_{i j}^{\infty}\right)$ with the proposed MCM over the corresponding experimental values (\exp) from the DDB. The depicted range includes results for 99.9% of the total data set.

In the following, we compare the proposed MCM with one of the highly developed physical methods for predicting activity coefficients. Modified UNIFAC (Dortmund) ${ }^{31,32}$, referred to simply as UNIFAC in the following, is the most successful of these methods and has been considered as the gold standard for more than 30 years. In UNIFAC, the properties of a mixture
are determined by the functional groups of the molecules and their interactions. The interaction parameters are obtained by fitting them to experimental data.

With its present published parameterization, UNIFAC is able to predict the activity coefficients for 3342 of the 4094 solute-solvent combinations that are considered here. In Figure 3, we compare the predictions for this subset obtained with the proposed MCM with those from UNIFAC in a histogram. The corresponding parity plot is given in Figure S5 in the Supporting Information. The results demonstrate a better performance of the proposed MCM. As an example, the absolute error is below 0.1 for 37.4% of the predictions with UNIFAC, whereas the proposed MCM achieves the same accuracy for 50.0% of the predictions. The MCM also clearly outperforms UNIFAC in terms of mean absolute deviation and mean square error, cf. Table S1 in the Supporting Information.

Figure 3. Histogram of the differences of the predictions for $\ln \left(\gamma_{i j}^{\infty}\right)$ with the proposed MCM or UNIFAC and the corresponding experimental values (exp) from the DDB. $\Delta \ln \left(\gamma_{i j}^{\infty}\right)=\ln \left(\gamma_{i j}^{\infty}\right)^{\mathrm{MCM} / \text { UNIFAC }}-\ln \left(\gamma_{i j}^{\infty}\right)^{\text {exp }} . N$ represents the number of binary mixtures $i-j$ for which the differences are within the given intervals. The depicted range includes results for 96.9% of the total data set for both methods.

Besides the better performance, the proposed MCM has two additional clear advantages over UNIFAC. First, the further development of UNIFAC is extremely elaborate. UNIFAC is based on the segmentation of components into groups. Choosing these groups and determining the group parameters as well as the group interaction parameters from selected data sets is an art that is practiced by only a few specialists, several generations of which have been working on the method since it was first introduced in 1975. By contrast, matrix completion is a general concept that is easy to use, and that can be improved simply by retraining on a larger data set whenever new
experimental data become available. Second, the application of UNIFAC to predict $\gamma_{i j}^{\infty}$ is limited by the availability of the required group parameters, which are elaborate to obtain as described above. For the solutes and solvents considered here, $\gamma_{i j}^{\infty}$ for less than two thirds of all binary mixtures can be predicted with UNIFAC, cf. Figure S 2 in the Supporting Information. With the proposed MCM, $\gamma_{i j}^{\infty}$ for all possible combinations of the studied components can be predicted, i.e., all gaps in the matrix can be filled.

Our results demonstrate the potential of using matrix completion to predict $\gamma_{i j}^{\infty}$ in binary mixtures, but should be considered as only the first step towards using MCM for predicting physico-chemical properties of binary mixtures in general. In future work, physical descriptors will be included in the MCM algorithm. These physical descriptors could, for example, contain information on the chemical groups of the components, as they are used in UNIFAC. Further iterations could also consider other choices, such as σ-profiles of the components, as they are used in COSMO-RS ${ }^{17}$. It can be expected that adding such information will lead to significant improvements. A feature analysis of the MCM results could reveal structures in the data that could provide further insight to physical structure-property relations. Furthermore, the approach will be extended to other temperatures and properties. Ultimately, we conjecture that our approach only scratched the surface of what is possible and may inspire the next generation of prediction methods in chemical engineering.

Acknowledgments

Fabian Jirasek greatly acknowledges financial support by a postdoc fellowship of the German Academic Exchange Service (DAAD). The Fraunhofer team acknowledges funding through the Fraunhofer Cluster of Excellence »Cognitive Internet Technologies«. Stephan Mandt acknowledges funding from DARPA (HR001119S0038), NSF (FW-HTF-RM), and Qualcomm.

Notes

The authors declare no competing financial interests.

Supporting Information

Information on the used experimental data and data preprocessing. Information on the probabilistic model, variational inference, and the calculation of model predictions. Additional results for an alternative model based on a normal likelihood.

References

(1) Venkatasubramanian, V. The Promise of Artificial Intelligence in Chemical Engineering: Is It Here, Finally? AIChE J. 2019, 65, 466-478.
(2) Ramprasad, R.; Batra, R. ; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine Learning in Materials Informatics: Recent Applications and Prospects. npj Comp. Mater. 2017, 3, 54.
(3) Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine Learning for Molecular and Materials Science. Nature 2018, 559, 547-555.
(4) Mitchell, J. B. O. Machine Learning Methods in Chemoinformatics. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 468-481.
(5) Estrada, E.; Díaz, G. A.; Delgado E. J. Predicting Infinite Dilution Activity Coefficients of Organic Compounds in Water by Quantum-Connectivity Descriptors. J. Comput.-Aided Mol. Des. 2006, 20, 539-548.
(6) Giralt, F.; Espinosa, G.; Arenas, A.; Ferre-Gine, J.; Amat, L.; Gironés, X.; Carbó-Dorca, R.; Cohen, Y. Estimation of Infinite Dilution Activity Coefficients of Organic Compounds in Water with Neural Classifiers. AIChE J. 2004, 50, 1315-1343.
(7) Mitchell, B. E.; Jurs, P. C. Prediction of Infinite Dilution Activity Coefficients of Organic Compounds in Aqueous Solution from Molecular Structure. J. Chem. Inf. Comput. Sci. 1998, 38, 200-209.
(8) Paduszyński, K. In Silico Calculation of Infinite Dilution Activity Coefficients of Molecular Solutes in Ionic Liquids: Critical Review of Current Methods and New Models based on Three Machine Learning Algorithms. J. Chem. Inf. Model. 2016, 56, 1420-1437.
(9) Ajmani, S.; Rogers, S. C.; Barley, M. H.; Burgess, A. N.; Livingstone, D. J. Characterization of Mixtures Part 1: Prediction of Infinite-Dilution Activity Coefficients using Neural Networkbased QSPR Models. QSAR Comb. Sci. 2008, 27, 1346-1361.
(10) Behrooz, H. A.; Boozarjomehry, R. B. Prediction of Limiting Activity Coefficients for Binary Vapor-Liquid Equilibrium using Neural Networks. Fluid Phase Equilib. 2017, 433, 174-183.
(11) Katritzky, A. R.; Kuanar, M.; Slavov, S.; Hall, C. D.; Karelson, M.; Kahn, I.; Dobchev. D. A. Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction. Chem. Rev. 2010, 110, 5714-5789.
(12) Carlson, H. C.; Colburn, A. P. Vapor-Liquid Equilibria of Nonideal Solutions. Ind. Eng. Chem. 1942, 34, 581-589.
(13) Onken, U.; Rarey-Nies, J.; Gmehling, J. The Dortmund Data Bank: A Computerized System for the Retrieval, Correlation, and Prediction of Thermodynamic Properties of Mixtures. Int. J. Thermophys. 1989, 10, 739-747.
(14) Linstrom, P. J.; Mallard, W.G. (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology).
(15) Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures. AIChE J. 1975, 21, 1086-1099.
(16) Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilibria Using UNIFAC, A Group-Contribution Method; Elsevier: Amsterdam, Netherlands; 1977.
(17) Klamt, A. Conductor-Like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224-2235.
(18) Bennett, J.; Lanning, S. The Netflix Prize. Proceedings of KDD Cup and Workshop 2007.
(19) Candès, E. J.; Recht, B. Exact Matrix Completion via Convex Optimization. Found. Comput. Math. 2009, 9, 717-772.
(20) Keshavan, R. H.; Montanari, A.; Oh, S. Matrix Completion from Noisy Entries. J. Mach. Learn. Res. 2010, 22, 2057-2078.
(21) Xue, H.-J.; Dai, X.; Zhang, J.; Huang, S.; Chen, J. Deep Matrix Factorization Models for Recommender Systems. Proceedings of the $26^{\text {th }}$ International Joint Conference on Artificial Intelligence, 2017, 3203-3209.
(22) Salakhutdinov, R.; Mnih, A. Bayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo. Proceedings of the $25^{\text {th }}$ International Conference on Machine Learning, 2008, 880887.
(23) Mazumder, R.; Hastie, T.; Tibshirani, R. Spectral Regularization Algorithms for Learning Large Incomplete Matrices. J. Mach. Learn. Res. 2010, 11, 2287-2322.
(24) Pazzani, M. J.; Billsus, D. Content-based Recommender Systems. In Brusilovsky, P.; Kobsa, A.; Nejdl, W. (Eds.) The Adaptive Web. Lecture Notes in Computer Science; Springer: Berlin, Heidelberg, Germany; 2007.
(25) S. Raghuwanshi, K.; Pateriya, R. K. Collaborative Filtering Techniques in Recommender Systems. In Shukla, R. K.; Agrawal, J.; Sharma, S.; Tomer, G. S. (Eds.) Data, Engineering and Applications; Springer: Singapore; 2019.
(26) Blei, D. M.; Kucukelbir, A.; McAuliffe, J. D. Variational Inference: A Review for Statisticians. J. Am. Stat. Assoc. 2017, 112, 859-877.
(27) Zhang, C.; Butepage, J.; Kjellstrom, H.; Mandt. S. Advances in Variational Inference. IEEE T. Pattern Anal. 2019, 41, 2008-2026.
(28) Kucukelbir, A.; Tran, D.; Ranganath, R.; Gelman, A.; Blei, D. M. Automatic Differentiation Variational Inference. J. Mach. Learn. Res. 2017, 18, 1-45.
(29) Carpenter, B.; Gelman, A.; Hoffman, M. D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A Probabilistic Programming Language. J. Stat. Softw. 2017, 76, 1-32.
(30) Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, USA; 2016.
(31) Weidlich, U.; Gmehling, J. A Modified UNIFAC Model. 1. Prediction of VLE, h^{E}, and γ^{∞}. Ind. Eng. Chem. Res. 1987, 26, 1372-1381.
(32) Constantinescu, D.; Gmehling, J. Further Development of Modified UNIFAC (Dortmund): Revision and Extension 6. J. Chem. Eng. Data 2016, 61, 2738-2748.

Supporting Information for

Machine Learning in Thermodynamics: Prediction of Activity Coefficients by Matrix Completion

Fabian Jirasek ${ }^{1,2^{+*}}$, Rodrigo A. S. Alves ${ }^{3 \dagger}$, Julie Damay ${ }^{4 \dagger}$, Robert A. Vandermeulen ${ }^{3}$, Robert Bamler ${ }^{l}$, Michael Bortz ${ }^{4 \hbar \hbar}$, Stephan Mandt $t^{1 *}$, Marius Kloft ${ }^{3+\hbar}$, Hans Hasse ${ }^{2 \hbar}$
${ }^{1}$ Department of Computer Science, University of California, Irvine, USA
${ }^{2}$ Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, Kaiserslautern, Germany
${ }^{3}$ Machine Learning Group, Department of Computer Science, TU Kaiserslautern, Kaiserslautern, Germany
${ }^{4}$ Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
${ }^{\dagger}$ These authors contributed equally to this work.
*These authors jointly directed this work.

Corresponding Author

*Correspondence to: fabian.jirasek@mv.uni-kl.de

Experimental Data and Preprocessing

All data for training and evaluation of the proposed matrix completion method (MCM) were taken from the current version (2019) of the Dortmund Data Bank (DDB) ${ }^{1}$. All data for activity coefficients at infinite dilution $\gamma_{i j}^{\infty}$ in binary mixtures at temperatures ranging from 297.15 to 299.15 K, i.e., at $298.15(\pm 1) \mathrm{K}$, were adopted. The temperature dependence of activity coefficients in such narrow temperature ranges is in general small and is therefore not considered here. For several solute i-solvent j combinations, multiple results on $\gamma_{i j}^{\infty}$ in the considered temperature range are available in the DDB. For these combinations, the arithmetic mean of all available data was used for training and evaluation. The data set was further modified as follows: only molecular components were considered. Non-molecular solutes and solvents, mainly salts and ionic liquids, but also metals and components for which no molecular formula was available, were eliminated from the data set. This restriction is not mandatory, but we consider the excluded components substantially different such that it is not reasonable to model them alongside the studied components. Furthermore, to be able to evaluate the predictions of the proposed MCM by leave-one-out cross-validation, all solutes and solvents for which only data on $\gamma_{i j}^{\infty}$ in a single mixture were available were eliminated from the data set. In total, 240 solutes and 250 solvents complied with the above stated conditions and were considered in the present study. Figure S1 shows the distribution of the experimental $\gamma_{i j}^{\infty}$ values in the studied data set in a logarithmic scale.

Figure S1. Histogram of the logarithmic values of the activity coefficients at infinite dilution $\gamma_{i j}^{\infty}$ that were used for training and testing the proposed MCM. N represents the number of binary mixtures $i-j$ for which $\ln \left(\gamma_{i j}^{\infty}\right)$ is within the given intervals. The depicted range includes 99.8% of the total data set.

Figure S2 shows a schematic representation of all possible binary mixtures of the studied solutes i and solvents j. The black squares indicate the mixtures for which experimental data on $\gamma_{i j}^{\infty}$ at $298.15(\pm 1) \mathrm{K}$ are available in the present version of the DDB. Additionally, the color code indicates if the mixtures can be modeled with the present published version of modified UNIFAC (Dortmund) ${ }^{2,3}$, simply referred to as UNIFAC in the following, or not.

Figure S2. Schematic depiction of the matrix representing all possible binary mixtures of the studied 240 solutes and 250 solvents. Black: mixtures for which experimental data on $\gamma_{i j}^{\infty}$ at $298.15(\pm 1) \mathrm{K}$ are available in the 2019 version of the DDB. Blue: mixtures for which no experimental data are available and UNIFAC can be applied. Red: mixtures for which no experimental data are available and UNIFAC with its present published parameterization cannot be applied.

Tables S2 and S3, which were moved to the end of this document for improved readability, list all studied solutes and solvents, respectively. Note that 97 components appear as both solutes and solvents. Hence, the matrix contains 97 entries that correspond to pure components. For training the MCM, the values of $\gamma_{i j}^{\infty}$ for these entries were set to 1 , i.e., $\ln \left(\gamma_{i j}^{\infty}\right)$ was set to 0 , which follows from the definition of the activity coefficient. These entries were not considered during the evaluation.

Probabilistic Model

Our matrix completion method follows a Bayesian approach building on a probabilistic generative model and an inference method. The probabilistic model defines a probability distribution over all activity coefficients in logarithmic scale $\ln \left(\gamma_{i j}^{\infty}\right)$ by specifying a stochastic process that generates hypothetical activity coefficients conditioned on some initially unknown, or 'latent', parameters of the components i and j. These parameters are called component features in the following. The inference method inverts the generative process and reasons about the component features for given observations, i.e., data on $\ln \left(\gamma_{i j}^{\infty}\right)$.

For each solute i (each solvent j), the generative process first draws a latent feature vector $u_{i}\left(v_{j}\right)$ of dimension $K=4$ from a normal distribution with zero mean and standard deviation σ_{0}. It then models the probability of each $\ln \left(\gamma_{i j}^{\infty}\right)$ as a Cauchy distribution with scale λ centered around the dot product of u_{i} and v_{j}. This is called a probabilistic matrix factorization model since the large matrix of $\ln \left(\gamma_{i j}^{\infty}\right)$ is modeled in terms of the product of a (smaller) tall matrix, whose rows are the solute feature vectors u_{i}, and a narrow matrix, whose columns are the solvent feature vectors v_{j}. The parameters σ_{0} and λ were set by cross-validation to $\sigma_{0}=0.8$ and $\lambda=0.15$. Figure S 3 shows our implementation of the generative model in the probabilistic programming language Stan^{4}, which automates the task of approximate Bayesian inference in a user-defined generative model. We also fitted a model where we replaced the Cauchy distribution by a normal distribution, see Section 'Additional Results' below.

```
data {
    int<lower=0> I; // number of solutes
    int<lower=0> J; // number of solvents
    int<lower=0> K; // number of latent dimensions
    real ln_gamma[I,J]; // matrix of logarithmic activity coefficients
    real<lower=0> sigma_0; // Prior standard deviation
    real<lower=0> lambda; // Likelihood scale
}
parameters {
    vector[K] u[I]; // solute feature vectors
    vector[K] v[J]; // solvent feature vectors
}
    model {
    // prior: draw feature vectors for all solutes and solvents:
    for (i in 1:I)
            u[i] ~ normal(0,sigma_0);
    for (j in 1:J)
            v[j] ~ normal(0,sigma_0);
    // likelihood: model the probability of ln_gamma as a Cauchy distribution
    // around the dot product of the feature vectors:
    for (i in 1:I) {
            for (j in 1:J) {
                if (ln_gamma[i,j] != -99) { // train to available data only
                    ln_gamma[i,j] ~ cauchy(u[i]' * v[j],lambda);
            }
        }
    }
    }
```

Figure S3. Stan code for the proposed matrix completion method, adapted from Kucukelbir et al. ${ }^{5}$ Line 26 ensures that the method is only trained to the observed entries of the matrix, since all unobserved entries were set to -99 prior to the training. In an alternative model, a normal distribution was used as likelihood (line 27), cf. Section 'Additional Results' below.

Variational Inference

The inference algorithm fits the probabilistic model to the observed data by calculating the socalled posterior probability distribution, i.e., the probability distribution over the latent feature vectors u_{i} and v_{j} conditioned on the observed activity coefficients. As exact posterior inference is infeasible, we resort to Gaussian mean field variational inference ${ }^{5-7}$ (VI), which approximates the exact posterior distribution by a normal distribution for each latent feature. This process is automated by the Stan framework. In detail, VI poses a so-called variational family, i.e., a family of probability distributions over the latent feature vectors that are parameterized by so-called variational parameters, and that are considered candidates for an approximate posterior. In Gaussian mean-field VI, the variational family consists of all fully factorized normal distributions, and the variational parameters are the means and standard deviations along each coordinate of the latent space. VI then finds the element of the variational family that most closely matches the true posterior distribution by numerically minimizing the so-called Kullback-Leibler divergence from the true posterior to the approximate posterior. This can be done without having to explicitly calculate the true posterior, which would be numerically infeasible. We refer to the literature ${ }^{6,7}$ for more background on VI.

Calculation of Model Predictions

To predict $\ln \left(\gamma_{i j}^{\infty}\right)$ for a given previously unknown solute i - solvent j combination, we take the means of the corresponding feature vectors u_{i} and v_{j} under the approximate posterior distribution that were obtained by training the model to the data. We also experimented with a variant of this method that takes the mode instead of the mean under the posterior distribution, i.e., the values for u_{i} and v_{j} with highest posterior probability. This so-called maximum a-posteriori (MAP) approximation is conceptionally simpler than posterior means because searching for the MAP solution can be implemented without explicitly keeping track of uncertainties. However, we found posterior means to be more robust to outliers in the data set than MAP. Improved robustness compared to MAP is a known property of VI^{8}. When we report predictions for $\ln \left(\gamma_{i j}^{\infty}\right)$ in this work, the prediction is always based on a model where the solute i - solvent j combination that we predict was excluded from the observed data in the inference process. This ensures that the method cannot cheat by predicting the value of $\ln \left(\gamma_{i j}^{\infty}\right)$ from the training data.

Additional Results

Figure S4 shows a histogram of the differences of the predictions for $\ln \left(\gamma_{i j}^{\infty}\right)$ with the proposed MCM and the corresponding experimental values from the DDB for the complete data set. Figure S 4 is an alternative representation of the results shown in Figure 2 in the manuscript.

Figure S4. Histogram of the differences of the predictions for $\ln \left(\gamma_{i j}^{\infty}\right)$ with the proposed MCM and the corresponding experimental values (exp) from the DDB: $\Delta \ln \left(\gamma_{i j}^{\infty}\right)=\ln \left(\gamma_{i j}^{\infty}\right)^{\mathrm{MCM}}-\ln \left(\gamma_{i j}^{\infty}\right)^{\exp }$. N represents the number of binary mixtures $i-j$ for which the differences are within the given intervals. The depicted range includes results for 96.6% of the total data set.

Figure S 5 shows a parity plot of the predictions for $\ln \left(\gamma_{i j}^{\infty}\right)$ with the proposed MCM and UNIFAC over the corresponding experimental values from the DDB . Only predictions for mixtures that can be modeled with UNIFAC are shown for both methods. Figure S 5 is an alternative representation of the results shown in Figure 3 in the manuscript.

Figure S5. Parity plot of the predictions (pred) for $\ln \left(\gamma_{i j}^{\infty}\right)$ with the proposed MCM and UNIFAC over the corresponding experimental values (\exp) from the DDB. The depicted range includes results for 99.9% (MCM) and 99.7% (UNIFAC) of the data set.

In the following, predictions from the alternative model that uses a normal distribution instead of a Cauchy distribution as likelihood, cf. previous section, are shown for the same data sets as in the manuscript. The presentation of the results is essentially the same as in Figures S4 and S5 and in Figures 2 and 3 in the manuscript. The predictive power of both MCMs is similar and both outperform the state-of-the-art physical method UNIFAC. This can also be seen by considering the mean absolute deviation (MAD) and the mean square error (MSE) of the predictions compared to the experimental data, cf. Table S1.

Figure S6. Parity plot of the predictions for $\ln \left(\gamma_{i j}^{\infty}\right)$ with the alternative MCM over the corresponding experimental values (exp) from the DDB. The depicted range includes results for 99.9% of the total data set.

Figure S7. Histogram of the differences of the predictions for $\ln \left(\gamma_{i j}^{\infty}\right)$ with the alternative MCM and the corresponding experimental values (exp) from the DDB: $\Delta \ln \left(\gamma_{i j}^{\infty}\right)=\ln \left(\gamma_{i j}^{\infty}\right)^{\mathrm{MCM}}-\ln \left(\gamma_{i j}^{\infty}\right)^{\exp }$. N represents the number of binary mixtures $i-j$ for which the differences are within the given intervals. The depicted range includes results for 97.7% of the total data set.

Figure S8. Parity plot of the predictions (pred) for $\ln \left(\gamma_{i j}^{\infty}\right)$ with the alternative MCM and UNIFAC over the corresponding experimental values (exp) from the DDB. Only results for mixtures that can be modeled with UNIFAC are shown. The depicted range includes results for 99.9% (MCM) and 99.7% (UNIFAC) of the data set.

Figure S9. Histogram of the differences of the predictions for $\ln \left(\gamma_{i j}^{\infty}\right)$ with the alternative MCM or UNIFAC and the corresponding experimental values (exp) from the DDB: $\Delta \ln \left(\gamma_{i j}^{\infty}\right)=\ln \left(\gamma_{i j}^{\infty}\right)^{\text {MCM/UNIFAC }}-\ln \left(\gamma_{i j}^{\infty}\right)^{\text {exp }}$. N represents the number of binary mixtures $i-j$ for which the differences are within the given intervals. Only results for mixtures that can be modeled with UNIFAC are shown. The depicted range includes results for 97.6% of the data set for the proposed MCM and 96.9\% for UNIFAC.

Table S1. Mean absolute deviation (MAD) and mean square error (MSE) of the predictions with the proposed MCMs and UNIFAC referred to the experimental data in all cases. 'Cauchy' and 'Normal' refer to the likelihood of the respective methods. Two data sets were considered: the complete data set, cf. Figures 2 (in the manuscript), S4, S6, and S7, and a smaller data set containing only mixtures for which UNIFAC yields predictions, cf. Figures 3 (in the manuscript), S5, S8, and S9.

	Complete data set		Data selection			
Method	MAD		MSE	MAD		MSE
MCM 'Cauchy'	0.336	0.825	0.316	0.773		
MCM 'Normal'	0.315	0.667	0.305	0.643		
UNIFAC	n.a.	n.a.	0.635	36.638		

Table S2. Overview of the components that were considered as solutes in the present work. All information is adopted from the Dortmund Data Bank (DDB) ${ }^{1}$. In the last column, the group split according to modified UNIFAC (Dortmund) ${ }^{2,3}$ is given, if applicable: the last three digits of each number define the subgroup, whereas with the first (two) digit(s) the count of the respective group per molecule is given.

Component name	Chemical formula	CAS number	UNIFAC groups
Acetaldehyde	C2H4O	75-07-0	1001, 1020
Acetonitrile	C2H3N	75-05-8	1040
Acetone	C3H6O	67-64-1	1001, 1018
Ethyl bromide	C2H5Br	74-96-4	1001, 1002, 1064
Ethyl iodide	C2H5I	75-03-6	1001, 1002, 1063
Ethanol	C2H6O	64-17-5	1001, 1002, 1014
Diethyl ether	C4H10O	60-29-7	2001, 1002, 1025
Formic acid ethyl ester	C3H6O2	109-94-4	1023, 1001, 1002
Aniline	C6H7N	62-53-3	5009, 1036
Methoxybenzene	C7H8O	100-66-3	5009, 1010, 1024
Ethyl acetate	C4H8O2	141-78-6	1001, 1002, 1021
2-Butanol	C4H10O	78-92-2	2001, 1002, 1003, 1014
Ethylbenzene	C8H10	100-41-4	1001, 5009, 1012
Bromobenzene	C6H5Br	108-86-1	5009, 1010, 1064
Chlorobenzene	C6H5Cl	108-90-7	5009, 1053
Benzonitrile	C7H5N	100-47-0	n.a.
Nitrobenzene	C6H5NO2	98-95-3	5009, 1057
Benzene	C6H6	71-43-2	6009
1-Butanol	C4H10O	71-36-3	1001, 3002, 1014
2-Butanone	C4H8O	78-93-3	1001, 1002, 1018
n-Butane	C4H10	106-97-8	2001, 2002
Butyl chloride	C4H9Cl	109-69-3	1001, 2002, 1044
Chloroform	CHCl3	67-66-3	1050
3-Methylphenol	C7H8O	108-39-4	4009, 1011, 1017
Cyclohexane	C6H12	110-82-7	6002
Cyclopentane	C5H10	287-92-3	5002
Cyclohexene	C6H10	110-83-8	4002, 1006
Methylcyclohexane	C7H14	108-87-2	1001, 5002, 1003
Methylcyclopentane	C6H12	96-37-7	1001, 4002, 1003
Dibutyl ether	C8H18O	142-96-1	2001, 5002, 1025
Decane	C10H22	124-18-5	2001, 8002
1,1-Dichloroethane	C2H4Cl2	75-34-3	1001, 1048
1,2-Dichloroethane	C2H4Cl2	107-06-2	2044
Dichloromethane	CH2Cl2	75-09-2	1047
1,2-Dichloropropane	C3H6Cl2	78-87-5	1001, 1044, 1045

N,N-Dimethylformamide	C3H7NO	68-12-2	1072
2,4-Dimethylpentane	C7H16	108-08-7	4001, 1002, 2003
1,4-Dioxane	C4H8O2	123-91-1	2002, 2027
Dodecane	C12H26	112-40-3	2001, 10002
Benzaldehyde	C7H6O	100-52-7	5009, 1010, 1020
Butyl acetate	C6H12O2	123-86-4	1001, 3002, 1021
Methyl acetate	C3H6O2	79-20-9	1001, 1021
Acetic acid	C2H4O2	64-19-7	1001, 1042
Hexane	C6H14	110-54-3	2001, 4002
Heptane	C7H16	142-82-5	2001, 5002
2-Heptanone	C7H14O	110-43-0	1001, 4002, 1018
2-Methylbutane	C5H12	78-78-4	3001, 1002, 1003
2-Propanol	C3H8O	67-63-0	2001, 1003, 1014
Diisopropyl ether	C6H14O	108-20-3	4001, 1003, 1026
2,2,4-Trimethylpentane	C8H18	540-84-1	5001, 1002, 1003, 1004
Isoprene	C5H8	78-79-5	1001, 1005, 1007
Methyl iodide	CH3I	74-88-4	1001, 1063
1-Hexene	C6H12	592-41-6	1001, 3002, 1005
Hexylamine	C6H15N	111-26-2	1001, 4002, 1029
1-Methylnaphthalene	C11H10	90-12-0	7009, 1011, 2010
Methanol	CH4O	67-56-1	1015
2-Methylpentane	C6H14	107-83-5	3001, 2002, 1003
3-Methylpentane	C6H14	96-14-0	3001, 2002, 1003
Butylbenzene	C10H14	104-51-8	1001, 2002, 5009, 1012
4-Methyl-2-pentanone	C6H12O	108-10-1	2001, 1002, 1003, 1018
4-Methylpyridine	C6H7N	108-89-4	1001, 1038
2-Methyl-1-propanol	C4H10O	78-83-1	2001, 1002, 1003, 1014
Naphthalene	C10H8	91-20-3	8009, 2010
Nitromethane	CH3NO2	75-52-5	1054
1-Nitropropane	C3H7NO2	108-03-2	1001, 1002, 1055
Octane	C8H18	111-65-9	2001, 6002
1-Octene	C8H16	111-66-0	1001, 5002, 1005
2-Methylphenol	C7H8O	95-48-7	4009, 1011, 1017
4-Methylphenol	C7H8O	106-44-5	4009, 1011, 1017
Pentane	C5H12	109-66-0	2001, 3002
1-Pentanol	C5H12O	71-41-0	1001, 4002, 1014
2-Pentanone	C5H10O	107-87-9	1001, 2002, 1018
Phenol	C6H6O	108-95-2	5009, 1017
1-Propanol	C3H8O	71-23-8	1001, 2002, 1014
Propionic acid	C3H6O2	79-09-4	1001, 1002, 1042
Pyridine	C5H5N	110-86-1	1037
Carbon disulfide	CS2	75-15-0	1058
Dimethyl sulfoxide	C2H6OS	67-68-5	1067
tert-Butanol	C4H10O	75-65-0	3001, 1004, 1014
$1,2,3,4-$ Tetrahydronaphthalene	C10H12	119-64-2	2002, 4009, 2012
Tetrachloromethane	CCl4	56-23-5	1052

Tetrahydrofuran	C4H8O	109-99-9	3002, 1027
Toluene	C7H8	108-88-3	5009, 1011
Triethylamine	C6H15N	121-44-8	3001, 2002, 1035
1,1,2-Trichloroethane	C2H3Cl3	79-00-5	1044, 1048
Tetrachloroethylene	C2Cl4	127-18-4	1070, 4069
1,1,1-Trichloroethane	C2H3Cl3	71-55-6	1001, 1051
Trichloroethylene	C 2 HCl 3	79-01-6	1008, 3069
Water	H2O	7732-18-5	1016
m-Xylene	C8H10	108-38-3	4009, 2011
p-Xylene	C8H10	106-42-3	4009, 2011
Nitroethane	C2H5NO2	79-24-3	1001, 1055
Fluorobenzene	C6H5F	462-06-6	5009, 1071
1,1,2,2-Tetrachloroethane	C2H2Cl4	79-34-5	2048
Propanoic acid ethyl ester	C5H10O2	105-37-3	2001, 1002, 1022
Isoamyl acetate	C7H14O2	123-92-2	2001, 2002, 1003, 1021
tert-Butyl chloride	C4H9Cl	507-20-0	3001, 1046
N-Methylformamide	C2H5NO	123-39-7	n.a.
N,N-Dimethylacetamide	C4H9NO	127-19-5	1001, 1097
Acrylonitrile	C3H3N	107-13-1	1068
Propane	C3H8	74-98-6	2001, 1002
Propyl acetate	C5H10O2	109-60-4	1001, 2002, 1021
Butylamine	C4H11N	109-73-9	1001, 2002, 1029
Cyclopentanone	C5H8O	120-92-3	3002, 1019
Cyclohexanone	C6H10O	108-94-1	4002, 1019
Cyclohexanol	C6H12O	108-93-0	5002, 1003, 1014
1-Pentene	C5H10	109-67-1	1001, 2002, 1005
2-Methyl-2-butene	C5H10	513-35-9	3001, 1008
2-Methyl-1-butene	C5H10	563-46-2	2001, 1002, 1007
3-Methyl-1-butanol	C5H12O	123-51-3	2001, 2002, 1003, 1014
Thiophene	C4H4S	110-02-1	1106
N-Methyl-2-pyrrolidone	C5H9NO	872-50-4	1085
3-Pentanone	C5H10O	96-22-0	2001, 1002, 1019
Methyl formate	C2H4O2	107-31-3	1023, 1001
1-Hexanol	C6H14O	111-27-3	1001, 5002, 1014
Perfluoro-n-heptane	C7F16	335-57-9	2074, 5075
2,3-Dimethylpentane	C7H16	565-59-3	4001, 1002, 2003
Butyraldehyde	C4H8O	123-72-8	1001, 2002, 1020
1,3-Cyclopentadiene	C5H6	542-92-7	1002, 2006
2-Methylpropane	C4H10	75-28-5	3001, 1003
o-Xylene	C8H10	95-47-6	4009, 2011
Propionitrile	C3H5N	107-12-0	1001, 1041
Furan	C4H4O	110-00-9	n.a.
1-Chloropropane	C3H7Cl	540-54-5	1001, 1002, 1044
Di-n-propyl ether	C6H14O	111-43-3	2001, 3002, 1025
1-Heptanol	C7H16O	111-70-6	1001, 6002, 1014
1-Octanol	C8H18O	111-87-5	1001, 7002, 1014

Isopropylbenzene	C9H12	98-82-8	2001, 5009, 1013
1-Decene	C10H20	872-05-9	1001, 7002, 1005
3-Methyl-1-butene	C5H10	563-45-1	2001, 1003, 1005
trans-1,3-Pentadiene	C5H8	2004-70-8	1001, 1005, 1006
2-Methyl-2-pentene	C6H12	625-27-4	3001, 1002, 1008
1,3-Butadiene	C4H6	106-99-0	2005
2,3-Dimethylbutane	C6H14	79-29-8	4001, 2003
1-Butene	C4H8	106-98-9	1001, 1002, 1005
Propylbenzene	C9H12	103-65-1	1001, 1002, 5009, 1012
2,2-Dimethylbutane	C6H14	75-83-2	4001, 1002, 1004
Ethyl butyrate	C6H12O2	105-54-4	2001, 2002, 1022
Isobutyl acetate	C6H12O2	110-19-0	2001, 1002, 1003, 1021
Acetic acid isopropyl ester	C5H10O2	108-21-4	2001, 1003, 1021
Cycloheptane	C7H14	291-64-5	7002
Cyclooctane	C8H16	292-64-8	8002
4-Isopropyltoluene	C10H14	99-87-6	2001, 4009, 1011, 1013
Nonane	C9H20	111-84-2	2001, 7002
Propanal	C3H6O	123-38-6	1001, 1002, 1020
Methyl propanoate	C4H8O2	554-12-1	2001, 1022
Ethylcyclohexane	C8H16	1678-91-7	1001, 6002, 1003
Hexanoic acid methyl ester	C7H14O2	106-70-7	2001, 3002, 1022
Amyl acetate	C7H14O2	628-63-7	1001, 4002, 1021
Diisobutyl ketone	C9H18O	108-83-8	4001, 1002, 2003, 1019
Formic acid propyl ester	C4H8O2	110-74-7	1023, 2002, 1001
Methyl isopropyl ketone	C5H10O	563-80-4	2001, 1003, 1018
Isobutylene	C4H8	115-11-7	2001, 1007
Perfluorohexane	C6F14	355-42-0	2074, 4075
Biphenyl	C12H10	92-52-4	2010, 10009
Eicosane	C20H42	112-95-8	2001, 18002
1,3,5-Trimethylbenzene	C9H12	108-67-8	3009, 3011
Benzyl chloride	C7H7Cl	100-44-7	5009, 1010, 1044
Limonene	C10H16	138-86-3	2001, 3002, 1003, 1007, 1008
Hexadecane	C16H34	544-76-3	2001, 14002
Sulfolane	C4H8O2S	126-33-0	2002, 1118
2,4,4-Trimethyl-1- pentene	C8H16	107-39-1	4001, 1002, 1004, 1007
Diisobutyl ether	C8H18O	628-55-7	4001, 1002, 2003, 1025
1-Hexyne	C6H10	693-02-7	1001, 3002, 1065
1-Heptyne	C7H12	628-71-7	1001, 4002, 1065
1-Heptene	C7H14	592-76-7	1001, 4002, 1005
1,5-Hexadiene	C6H10	592-42-7	2002, 2005
1-Pentyne	C5H8	627-19-0	1001, 2002, 1065
2-Hexanone	C6H12O	591-78-6	1001, 3002, 1018
o-Methylaniline	C7H9N	95-53-4	4009, 1011, 1036
Xylene	C8H10	1330-20-7	4009, 2011

tert-Pentanol	C5H12O	75-85-4	3001, 1002, 1004, 1014
Dibromomethane	CH2Br2	74-95-3	1002, 2064
Propyl bromide	C 3 H 7 Br	106-94-5	2002, 1001, 1064
Methyl butanoate	C5H10O2	623-42-7	2001, 1002, 1022
n-Undecane	C11H24	1120-21-4	2001, 9002
2,3,4-Trimethyl pentane	C8H18	565-75-3	5001, 3003
1-Octyne	C8H14	629-05-0	1001, 5002, 1065
Isopropyl bromide	C3H7Br	75-26-3	2001, 1003, 1064
Valeraldehyde	C5H10O	110-62-3	1001, 3002, 1020
Hexanal	C6H12O	66-25-1	1001, 4002, 1020
Octanal	C8H16O	124-13-0	1001, 6002, 1020
2-Methylhexane	C7H16	591-76-4	3001, 3002, 1003
Cycloheptatriene	C7H8	544-25-2	1002, 3006
tert-Butylbenzene	C10H14	98-06-6	3001, 1004, 5009, 1010
Tetrahydropyran	C5H10O	142-68-7	4002, 1027
Decalin	C10H18	91-17-8	8002, 2003
o-Dichlorobenzene	C6H4Cl2	95-50-1	4009, 2053
m-Methylaniline	C7H9N	108-44-1	1011, 1036, 4009
Methyl tert-butyl ether (MTBE)	C5H12O	1634-04-4	3001, 1004, 1024
Dipentyl ether	C10H22O	693-65-2	1025, 2001, 7002
Cyclopentene	C5H8	142-29-0	1006, 3002
1,4-Cyclohexadiene	C6H8	628-41-1	2006, 2002
4-Ethenylcyclohexene	C8H12	100-40-3	1005, 1006, 1003, 3002
Methyl tert-amyl ether (TAME)	C6H14O	994-05-8	1024, 3001, 1002, 1004
Deuterium oxide	D2O	7789-20-0	1016
Hexyl acetate	C8H16O2	142-92-7	1001, 5002, 1021
Methyl valerate	C6H12O2	624-24-8	2001, 2002, 1022
Anthracene	C14H10	120-12-7	10009, 4010
Phenanthrene	C14H10	85-01-8	10009, 4010
2-Octanol	C8H18O	123-96-6	2001, 5002, 1003, 1014
Butanenitrile	C4H7N	109-74-0	1041, 1001, 1002
cis-1,3-Pentadiene	C5H8	1574-41-0	1005, 1006, 1001
Tetramethylstannane	C4H12Sn	594-27-4	n.a.
cis-2-Hexene	C6H12	7688-21-3	2001, 2002, 1006
Carbon dioxide	CO 2	124-38-9	n.a.
1,7-Octadiene	C8H14	3710-30-3	4002, 2005
2,2,2-Trifluoroethanol	C2H3F3O	75-89-8	1002, 1014, 1074
3-Heptanone	C7H14O	106-35-4	2001, 3002, 1019
2,2-Dimethylpentane	C7H16	590-35-2	4001, 2002, 1004
trans-1,4- Dimethylcyclohexane	C8H16	2207-04-7	2001, 4002, 2003
1,3-Cyclohexadiene	C6H8	592-57-4	2002, 2006
N,N-Dimethyl propanoic acid amide	C5H11NO	758-96-3	1001, 1002, 1097
Pentanenitrile	C5H9N	110-59-8	1001, 2002, 1041

1-Octanamine	C8H19N	111-86-4	1001, 6002, 1029
Dimethyl sulfide	C2H6S	75-18-3	1001, 1102
p-Terphenyl	C18H14	92-94-4	14009, 4010
Triacontane	C30H62	638-68-6	2001, 28002
Isobutyronitrile	C4H7N	78-82-0	n.a.
1-Aminopentane	C5H13N	110-58-7	1001, 3002, 1029
Dimethyl ethyl amine	C4H11N	598-56-1	2001, 1002, 1034
1-Chloropentane	C5H11Cl	543-59-9	1001, 3002, 1044
2,5-Dimethylhexane	C8H18	592-13-2	4001, 2002, 2003
Iodobenzene	C6H5I	591-50-4	5009, 1010, 1063
Ethyl tert-butyl ether (ETBE)	C6H14O	637-92-3	4001, 1004, 1025
Chrysene	C18H12	218-01-9	12009, 6010
Hexanenitrile	C6H11N	628-73-9	1001, 3002, 1041
1-Phenyldodecane	C18H30	123-01-3	1001, 10002, 5009, 1012
n-Butylcyclohexane	C10H20	1678-93-9	1001, 8002, 1003
N-Methylcaprolactam	C7H13NO	2556-73-2	n.a.
trans-2-Pentene	C5H10	646-04-8	2001, 1002, 1006
Heptylamine	C7H17N	111-68-2	1001, 5002, 1029
1,3-Butadiene, 2,3-dimethyl-	C6H10	513-81-5	2001, 2007
Benzyl bromide	C7H7Br	100-39-0	5009, 1012, 1064
2,5-Dimethylpyrazine	C6H8N2	123-32-0	n.a.
Tetraethylstannane	C8H20Sn	597-64-8	n.a.
1-Octen-3-ol	C8H16O	3391-86-4	1001, 4002, 1003, 1005, 1014
1-Octadecyl naphthalene	C28H44	26438-29-9	1001, 16002, 7009, 2010, 1012
1-Dodecyl	C22H42		1001, 18002, 3003
1,2-Epoxy-p-menth-8-ene	C10H16O	1195-92-2	n.a.

Table S3. Overview of the components that were considered as solvents in the present work. All information is adopted from the Dortmund Data Bank (DDB) ${ }^{1}$. In the last column, the group split according to modified UNIFAC (Dortmund) ${ }^{2,3}$ is given, if applicable: the last three digits of each number define the subgroup, whereas with the first (two) digit(s) the count of the respective group per molecule is given.

Component name	Chemical formula	CAS number	UNIFAC groups
Acetonitrile	C2H3N	75-05-8	1040
Acetone	C3H6O	67-64-1	1001, 1018
Ethylenediamine	C2H8N2	107-15-3	2029
Ethyl bromide	C2H5Br	74-96-4	1001, 1002, 1064
1,2-Ethanediol	C2H6O2	107-21-1	1062
Ethanol	C2H6O	64-17-5	1001, 1002, 1014
Diethyl ether	C4H10O	60-29-7	2001, 1002, 1025
Aniline	C6H7N	62-53-3	5009, 1036
Methoxybenzene	C7H8O	100-66-3	5009, 1010, 1024
2-Methylpyridine	C6H7N	109-06-8	1001, 1038
Ethyl acetate	C4H8O2	141-78-6	1001, 1002, 1021
Benzyl alcohol	C7H8O	100-51-6	5009, 1012, 1014
Bromobenzene	C6H5Br	108-86-1	5009, 1010, 1064
Chlorobenzene	C6H5Cl	108-90-7	5009, 1053
Benzonitrile	C7H5N	100-47-0	n.a.
Nitrobenzene	C6H5NO2	98-95-3	5009, 1057
Benzene	C6H6	71-43-2	6009
2-Butoxyethanol	C6H14O2	111-76-2	1001, 3002, 1100
1-Butanol	C4H10O	71-36-3	1001, 3002, 1014
2-Butanone	C4H8O	78-93-3	1001, 1002, 1018
cis-1,2-Dichloroethylene	C2H2Cl2	156-59-2	1006, 2069
2-Chloroethanol	C2H5ClO	107-07-3	1044, 1002, 1014
Chloroform	CHCl3	67-66-3	1050
3-Methylphenol	C7H8O	108-39-4	4009, 1011, 1017
Cyclohexane	C6H12	110-82-7	6002
Dibutyl ether	C8H18O	142-96-1	2001, 5002, 1025
Decane	C10H22	124-18-5	2001, 8002
1,1-Dichloroethane [R150a]	C2H4Cl2	75-34-3	1001, 1048
1,2-Dichloroethane	C2H4Cl2	107-06-2	2044
trans-1,2-Dichloroethene	C2H2Cl2	156-60-5	1006, 2069
Dichloromethane	CH2Cl2	75-09-2	1047
N,N-Dimethylformamide	C3H7NO	68-12-2	1072
1,4-Dioxane	C4H8O2	123-91-1	2002, 2027
2,4-Dimethylsulfolane	C6H12O2S	1003-78-7	2001, 1002, 1003, 1119
2,6-Dimethylpyridine	C7H9N	108-48-5	2001, 1039

Dodecane	C12H26	112-40-3	200110002
Butyl acetate	C6H12O2	123-86-4	1001, 3002, 1021
Methyl acetate	C3H6O2	79-20-9	1001, 1021
Acetic acid	C2H4O2	64-19-7	1001, 1042
Furfural	C5H4O2	98-01-1	1061
Hexane	C6H14	110-54-3	2001, 4002
Heptane	C7H16	142-82-5	2001, 5002
2-Heptanone	C7H14O	110-43-0	1001, 4002, 1018
2-Propanol	C3H8O	67-63-0	2001, 1003, 1014
Diisopropyl ether	C6H14O	108-20-3	4001, 1003, 1026
2,2,4-Trimethylpentane	C8H18	540-84-1	5001, 1002, 1003, 1004
1-Hexene	C6H12	592-41-6	1001, 3002, 1005
1-Methylnaphthalene	C11H10	90-12-0	7009, 1011, 2010
Methanol	CH4O	67-56-1	1015
2-Methoxyethanol	C3H8O2	109-86-4	1001, 1100
Nitromethane	CH3NO2	75-52-5	1054
1-Nitropropane	C3H7NO2	108-03-2	1001, 1002, 1055
Octane	C8H18	111-65-9	2001, 6002
1-Octene	C8H16	111-66-0	1001, 5002, 1005
Pentane	C5H12	109-66-0	2001, 3002
1-Pentanol	C5H12O	71-41-0	1001, 4002, 1014
2-Pentanone	C5H10O	107-87-9	1001, 2002, 1018
Phenol	C6H6O	108-95-2	5009, 1017
1-Propanol	C3H8O	71-23-8	1001, 2002, 1014
Pyridine	C5H5N	110-86-1	1037
Carbon disulfide	CS2	75-15-0	1058
Dimethyl sulfoxide	C2H6OS	67-68-5	1067
tert-Butanol	C4H10O	75-65-0	3001, 1004, 1014
Tetradecane	C14H30	629-59-4	200112002
trans-Decahydronaphthalene	C10H18	493-02-7	8002, 2003
1,2,3,4-Tetrahydronaphthalene	C10H12	119-64-2	2002, 4009, 2012
Tetrachloromethane	CC14	56-23-5	1052
Tetrahydrofurfuryl alcohol	C5H10O2	97-99-4	3002, 1003, 1014, 1027
Tetrahydrofuran	C4H8O	109-99-9	3002, 1027
Toluene	C7H8	108-88-3	5009, 1011
Triethylamine	C6H15N	121-44-8	3001, 2002, 1035
1,1,1-Trichloroethane [R140a]	C 2 H 3 Cl 3	71-55-6	1001, 1051
Water	H2O	7732-18-5	1016
p-Xylene	C8H10	106-42-3	4009, 2011
Nitroethane	C2H5NO2	79-24-3	1001, 1055
Cyclopentanol	C5H10O	96-41-3	4002, 1003, 1014
Fluorobenzene	C6H5F	462-06-6	5009, 1071
1,1,2,2-Tetrachloroethane	C2H2Cl4	79-34-5	2048
N-Methylformamide	C2H5NO	123-39-7	n.a.
N,N-Dimethylacetamide	C4H9NO	127-19-5	1001, 1097
Glycerol	C3H8O3	56-81-5	2002, 1003, 3014

Propyl acetate	C5H10O2	109-60-4	1001, 2002, 1021
Cyclopentanone	C5H8O	120-92-3	3002, 1019
Cyclohexanone	C6H10O	108-94-1	4002, 1019
Cyclohexanol	C6H12O	108-93-0	5002, 1003, 1014
Ricinoleic acid	C18H34O3	141-22-0	$\begin{aligned} & 1001,13002,1042,1006 \text {, } \\ & 1014,1003 \end{aligned}$
3-Methyl-1-butanol	C5H12O	123-51-3	2001, 2002, 1003, 1014
2-Ethoxyethanol	C4H10O2	110-80-5	1001, 1002, 1100
Furfuryl alcohol	C5H6O2	98-00-0	n.a.
1,2-Propanediol	C3H8O2	57-55-6	1001, 1002, 1003, 2014
N-Methyl-2-pyrrolidone	C5H9NO	872-50-4	1085
3-Pentanone	C5H10O	96-22-0	2001, 1002, 1019
N-Methylacetamide	C3H7NO	79-16-3	1001, 1095
1-Hexanol	C6H14O	111-27-3	1001, 5002, 1014
Hexafluorobenzene	C6F6	392-56-3	6071
Perfluoro-n-heptane	C7F16	335-57-9	2074, 5075
Perfluorotributylamine	C12F27N	311-89-7	n.a.
cis-Decahydronaphthalene	C10H18	493-01-6	8002, 2003
Propionitrile	C3H5N	107-12-0	1001, 1041
1-Heptanol	C7H16O	111-70-6	1001, 6002, 1014
1-Octanol	C8H18O	111-87-5	1001, 7002, 1014
1-Decene	C10H20	872-05-9	1001, 7002, 1005
Ethyl butyrate	C6H12O2	105-54-4	2001, 2002, 1022
Acetophenone	C8H8O	98-86-2	5009, 1010, 1018
Cycloheptanol	C7H14O	502-41-0	6002, 1003, 1014
Nonane	C9H20	111-84-2	2001, 7002
Amyl acetate	C7H14O2	628-63-7	1001, 4002, 1021
1,4-Dicyanobutane	C6H8N2	111-69-3	2002, 2041
Quinoline	C9H7N	91-22-5	4009, 1039
Phenylcyclohexane	C12H16	827-52-1	5002, 5009, 1013
Triethylene glycol	C6H14O4	112-27-6	2002, 2100
Chlorocyclohexane	C6H11Cl	542-18-7	5002, 1045
Diethylene glycol monomethyl ether	C5H12O3	111-77-3	2002, 1024, 1100
2-Isopropoxyethanol	C5H12O2	109-59-1	2001, 1003, 1100
Diethylene glycol	C4H10O3	111-46-6	2002, 1014, 1100
Perfluorohexane	C6F14	355-42-0	2074, 4075
Acetic acid benzyl ester	C9H10O2	140-11-4	5009, 1012, 1021
Diethylene glycol diethyl ether	C8H18O3	112-36-7	2001, 3002, 3025
Octamethylcyclotetrasiloxane	C8H24O4Si4	556-67-2	8001, 4084
Limonene	C10H16	138-86-3	2001, 3002, 1003, 1007, 1008
Hexadecane	C16H34	544-76-3	200114002
Phthalic acid dibutyl ester	C16H22O4	84-74-2	2001, 6002, 4009, 2010, 2077
1-Dodecanol	C12H26O	112-53-8	1001 11002, 1014
Sulfolane	C4H8O2S	126-33-0	2002, 1118
Monoethanolamine	C2H7NO	141-43-5	1002, 1014, 1029
2,5-Hexanedione	C6H10O2	110-13-4	2002, 2018

1,1,1,3,3,3-Hexafluoro-2-	C3H2F6O	920-66-1	1003, 1014, 2074
Phthalic acid diethyl ester	C12H14O4	84-66-2	2001, 2002, 4009, 2010, 2077
Tripentylamine	C15H33N	621-77-2	3001, 11002, 1035
Ethoxybenzene	C8H10O	103-73-1	1001, 5009, 1010, 1025
1,4-Butanediol	C4H10O2	110-63-4	4002, 2014
3,3'-Oxybispropionitrile	C6H8N2O	1656-48-0	1002, 1025, 2041
gamma-Butyrolactone	C4H6O2	96-48-0	2002, 1022
Bis(2-ethylhexyl) phthalate	C24H38O4	117-81-7	$\begin{aligned} & 4001,10002,2003,4009 \\ & 2010,2077 \end{aligned}$
1,1,2,2-Tetrabromoethane	C2H2Br4	79-27-6	2003, 4064
Phthalic acid dinonyl ester	C26H42O4	84-76-4	$\begin{aligned} & 2001,16002,4009,2010, \\ & 2077 \end{aligned}$
Phthalic acid benzyl butyl ester	C19H20O4	85-68-7	$\begin{aligned} & \text { 1001, } 3002,9009,2010, \\ & 1012,2077 \end{aligned}$
Formamide	CH3NO	75-12-7	n.a.
Ethyl benzoate	C9H10O2	93-89-0	1001, 1002, 5009, 1010, 1077
1,5-Pentanediol	C5H12O2	111-29-5	5002, 2014
Propylene carbonate	C4H6O3	108-32-7	n.a.
1,3-Propanediol	C3H8O2	504-63-2	3002, 2014
1,6-Hexanediol	C6H14O2	629-11-8	6002, 2014
Dichloroacetic acid	C2H2Cl2O2	79-43-6	1042, 1048
Indene	C9H8	95-13-6	1006, 4009, 1010, 1012
2,2'-Diethyl-dihydroxy sulfide	C4H10O2S	111-48-8	3002, 2014, 1103
Tetramethylene sulfoxide	C4H8OS	1600-44-8	n.a.
2-Mercapto ethanol	C2H6OS	60-24-2	1002, 1014, 1060
Divinylsulfone	C4H6O2S	77-77-0	n.a.
3-Methyl sulfolane	C5H10O2S	872-93-5	1001, 1002, 1003, 1118
1,2-Dicyanoethane	C4H4N2	110-61-2	2041
Decalin	C10H18	91-17-8	8002, 2003
2,4-Pentanedione	C5H8O2	123-54-6	1002, 2018
Glutaronitrile	C5H6N2	544-13-8	2041, 1002
Acetanilide	C8H9NO	103-84-4	n.a.
Methyl diphenyl phosphate	C13H13O4P	115-89-9	n.a.
Diethyl oxalate	C6H10O4	95-92-1	2001, 2002, 2077
Deuterium oxide	D2O	7789-20-0	1016
Hexyl acetate	C8H16O2	142-92-7	1001, 5002, 1021
Tributylamine	C12H27N	102-82-9	3001, 8002, 1035
Butanenitrile	C4H7N	109-74-0	1041, 1001, 1002
Dimethylcyanamide	C3H6N2	1467-79-4	n.a.
Diiodomethane	CH2I2	75-11-6	1002, 2063
Ethylene cyanohydrin	C3H5NO	109-78-4	1002, 1014, 1041
Squalane	C30H62	111-01-3	8001, 16002, 6003
Benzylcyanide	C8H7N	140-29-4	5009, 1010, 1041
Phenylacetone	C9H10O	103-79-7	5009, 1012, 1018
4-Phenyl-2-butanone	C10H12O	2550-26-7	1002, 5009, 1012, 1018
2,2,2-Trifluoroethanol	C2H3F3O	75-89-8	1002, 1014, 1074
Trioctylamine	C24H51N	1116-76-3	3001, 20002, 1035

Bicyclohexyl	C12H22	92-51-3	10002, 2003
N-Methyl propanamide	C4H9NO	1187-58-2	1001, 1002, 1095
N-Ethylacetamide	C4H9NO	625-50-3	2001, 1096
N,N-Dimethyl propanoic acid	C5H11NO	758-96-3	1001, 1002, 1097
Bromocyclohexane	C6H11Br	108-85-0	5002, 1003, 1064
Pentanenitrile	C5H9N	110-59-8	1001, 2002, 1041
Tributyl phosphate	C12H27O4P	126-73-8	n.a.
2-Pyrrolidone	C4H7NO	616-45-5	n.a.
1-Chloronaphthalene	C10H7Cl	90-13-1	7009, 2010, 1053
N-Formylmorpholine	C5H9NO2	4394-85-8	n.a.
Bis-(2-ethylhexyl)-sebacate	C26H50O4	122-62-3	4001, 16002, 2003, 2022
Trihexylamine	C18H39N	102-86-3	3001, 14002, 1035
alpha-Aminotoluene	C7H9N	100-46-9	5009, 1010, 1029
Hexamethylphosphoric acid triamide	C6H18N3OP	680-31-9	n.a.
Dimethyl ethyl amine	C4H11N	598-56-1	2001, 1002, 1034
Tetraethylene glycol	C8H18O5	112-60-7	3002, 1025, 2100
Triethyl phosphate	C6H15O4P	78-40-0	n.a.
Trimethyl phosphate	C3H9O4P	512-56-1	n.a.
Octanenitrile	C8H15N	124-12-9	1001, 5002, 1041
Iodobenzene	C6H5I	591-50-4	5009, 1010, 1063
Ethyl tert-butyl ether (ETBE)	C6H14O	637-92-3	4001, 1004, 1025
Dibenzyl ether	C14H14O	103-50-4	10009, 1010, 1012, 1025
Bis(2-ethylhexyl) phosphate	C16H35O4P	298-07-7	n.a.
N-Acetyloxazolidine	C5H9NO2	3672-60-4	1001, 1027, 1099
2-Phenylethanol	C8H10O	60-12-8	1002, 5009, 1012, 1014
1,5-Dimethyl-2-pyrrolidone	C6H11NO	5075-92-3	n.a.
4-Chloromethyl-2-one-1,3dioxolane	C4H5ClO3	2463-45-8	n.a.
Hexanenitrile	C6H11N	628-73-9	1001, 3002, 1041
Heptanenitrile	C7H13N	629-08-3	1001, 4002, 1041
Nonanenitrile	C9H17N	2243-27-8	1001, 6002, 1041
1,5-Dicyanopentane	C7H10N2	646-20-8	3002, 2041
1,6-Dicyanohexane	C8H12N2	629-40-3	4002, 2041
Malonic acid dinitrile	C3H2N2	109-77-3	n.a.
N-Acetylpiperidine	C7H13NO	618-42-8	1001, 3002, 1099
Carbonic acid diethyl ester	C5H10O3	105-58-8	n.a.
Ethylene carbonate	C3H4O3	96-49-1	n.a.
Ethylene sulfite	C2H4O3S	3741-38-6	n.a.
Ethyl phenyl ketone	C9H10O	93-55-0	1001, 5009, 1010, 1019
4-Bromoanisole	C7H7BrO	104-92-7	4009, 2010, 1024, 1064
Di(2-ethylhexyl) adipate	C22H42O4	103-23-1	4001, 2003, 12002, 2022
Pentadecanoic acid, nitrile	C15H29N	18300-91-9	1001, 12002, 1041
Cyclohexyl acetone	C9H16O	103-78-6	6002, 1003, 1018
Methylglutaronitrile	C6H8N2	4553-62-2	n.a.
Methyleneglutaronitrile	C6H6N2	1572-52-7	n.a.
beta-Chloropropionitrile	C3H4ClN	542-76-7	1041, 1044

N-Methylmethansulfonamide	C2H7NO2S	1184-85-6	n.a.
1-Bromonaphthalene	C10H7Br	90-11-9	7009, 3010, 1064
N,N-Diethylacetamide	C6H13NO	685-91-6	3001, 1099
Iminodipropionitrile	C6H9N3	111-94-4	1002, 1032, 2041
Mono-n-butyl phosphate	C4H11O4P	1623-15-0	n.a.
Tris-butoxyethyl phosphate	C18H39O7P	78-51-3	n.a.
Di-n-butyl phosphate	C8H19O4P	107-66-4	n.a.
N,N-Dibutyl-2ethylhexylamide	C16H33NO	5831-86-7	4001, 8002, 1003, 1099
N,N-Dimethylisobutyramide	C6H13NO	21678-37-5	2001, 1003, 1097
N-Isopropylformamide	C4H9NO	16741-46-1	n.a.
N-Isopropylacetamide	C5H11NO	1118-69-0	n.a.
N-Methylisobutyramide	C5H11NO	2675-88-9	2001, 1003, 1095
N-Ethylpropionamide	C5H11NO	5129-72-6	2001, 1002, 1096
N-Methyl-2-piperidone	C6H11NO	931-20-4	n.a.
N-Methylcaprolactam	C7H13NO	2556-73-2	n.a.
Propyl phenyl ketone	C10H12O	495-40-9	1001, 1002, 5009, 1010, 1019
1,3-Dimethylimidazolidin-2one	C5H10N2O	80-73-9	n.a.
Tetraethylene glycol dimethyl ether	C10H22O5	143-24-8	5002, 2024, 3025
Ethylene glycol monopropyl ether	C5H12O2	2807-30-9	1001, 2002, 1100
1,3-Dimethoxybenzene	C8H10O2	151-10-0	4009, 2010, 2024
Fumaronitrile	C4H2N2	764-42-1	n.a.
Maleonitrile	C4H2N2	928-53-0	n.a.
Linoleic acid	C18H32O2	60-33-3	1001, 12002, 2006, 1042
N,N-Dibutyl-2,2dimethylbutanamide	C14H29NO	126926-50-9	5001, 5002, 1004, 1099
Perfluoro-n-octane	C8F18	307-34-6	2074, 6075
1-(1-Naphthalenyl)ethanone	C12H10O	941-98-0	7009, 3010, 1018
N,N-Diethyl dodecanamide	C16H33NO	3352-87-2	3001, 10002, 1099
N-Ethyl-2-pyrrolidone	C6H11NO	2687-91-4	n.a.
1,2-Epoxy-p-menth-8-ene	C10H16O	1195-92-2	n.a.
Choline chloride	C5H14CINO	67-48-1	n.a.
Dimethylsulfolane	C6H12O2S	n.a.	2001, 2003, 1118
Sulfolanylamine	C4H9NO2S	n.a.	1002, 1030, 1118
Propyl sulfolanyl ether	C7H14O3S	n.a.	1001, 2002, 1003, 1025, 1118
Decyl sulfolanyl ether	C14H28O3S	n.a.	1001, 9002, 1003, 1025, 1118
Methylsulfolane	C5H10O2S	n.a.	1001, 1002, 1003, 1118

References

(1) Onken, U.; Rarey-Nies, J.; Gmehling, J. The Dortmund Data Bank: A Computerized System for the Retrieval, Correlation, and Prediction of Thermodynamic Properties of Mixtures. Int. J. Thermophys. 1989, 10, 739-747.
(2) Weidlich, U.; Gmehling, J. A Modified UNIFAC Model. 1. Prediction of VLE, h^{E}, and γ^{∞}. Ind. Eng. Chem. Res. 1987, 26, 1372-1381.
(3) Constantinescu, D.; Gmehling, J. Further Development of Modified UNIFAC (Dortmund): Revision and Extension 6. J. Chem. Eng. Data 2016, 61, 2738-2748.
(4) Carpenter, B.; Gelman, A.; Hoffman, M. D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A Probabilistic Programming Language. J. Stat. Softw. 2017, 76, 1-32.
(5) Kucukelbir, A.; Tran, D.; Ranganath, R.; Gelman, A.; Blei, D. M. Automatic Differentiation Variational Inference. J. Mach. Learn. Res. 2017, 18, 1-45.
(6) Blei, D. M.; Kucukelbir, A.; McAuliffe, J. D. Variational Inference: A Review for Statisticians. J. Am. Stat. Assoc. 2017, 112, 859-877.
(7) Zhang, C.; Butepage, J.; Kjellstrom, H.; Mandt. S. Advances in Variational Inference. IEEE T. Pattern Anal. 2019, 41, 2008-2026.
(8) Mandt, S.; McInerney, J.; Abrol, F.; Ranganath, R.; Blei, D. M. Variational Tempering. J. Mach. Learn. Res. 2016, 51, 704-712.

