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Introduction

•Stochastic Gradient Descent is an important algorithm. It minimizes an
objective function L(θ) =

∑N
i=1 `i(θ) based on the update

θt+1 = θt − ε∇θL̂S(θt), L̂S(θ) = N
S

∑
i∈St

`i(θ).

•Above, St ⊂ {1, . . . , N} is a random subset of indices of size S, drawn
at time t which constitutes the mini-batch. We assume N � S � 1.
•When ε is constant, SGD does not converge to a point. Instead, the

iterates of SGD converge in distribution to a stationary density.
•Goal: Analyze SGD for constant learning rates ε.
• Intuition: We interpret SGD as approximate inference and the sampling

distribution as an approximation to a posterior (next column).
•Method: We use the formalism of stochastic differential equations.

Continuous-time limit of SGD revisited

A1 Assume that the gradient noise∇L̂S(θ)−∇L(θ) is Gaussian distributed.
A2 Assume that the iterates θ(t) are constrained to a small region s.th. the

sampling noise covariance of the stochastic gradients is constant.
A3 Assume that the step size is small enough that we can approximate the

discrete-time SGD algorithm with a continuous-time Markov process.
A4 Assume that the stationary distribution of the iterates is constrained to a

region where the objective is approximately quadratic, L(θ) = 1
2θ
>Aθ.

Comments on assumptions A1–A4.
•Assumption A1 can be justified by the central limit theorem. In formulas,

∇L̂S(θ) ≈ ∇L(θ) + ξ̂S(θ), ξ̂S(θ) ∼ N (0, C(θ)/S),

C(θ)

S
≡ E

[
(∇L̂S(θ)−∇L(θ))(∇L̂S(θ)−∇L(θ))>

]
.

•Based on A2, C(θ) ≡ C is constant.
Write C = BB> and define Bε/S =

√
ε/S B.

θ(t + 1)− θ(t) = −ε∇L(θ(t)) +
√
εBε/SW (t), W (t) ∼ N (0, I).

•Based on A3, this equation becomes a stochastic differential equation,

dθ(t) = −∇θL(θ)dt + Bε/S dW (t)

•Based on A4, we derive the multivariate Ornstein-Uhlenbeck process,

dθ(t) = −Aθ(t)dt + Bε/SdW (t).

•This process approximates SGD under assumptions A1–A4.

Benefits of the Ornstein-Uhlenbeck Approximation

•Our approximation of SGD allows us to compute stationary distributions.
•Explicit formula for stationary distribution:

q(θ) ∝ exp
{
−1

2θ
>Σ−1θ

}
, ΣA> + AΣ = ε

SBB
>.

•We can read-off how various parameters of SGD affect this distribution.

Main Result: Constant-rate SGD as approximate inference

•For many problems in machine learning (including neural networks), the
objective has the interpretation of a negative log likelihood + log prior:

L(θ) = −
∑N

i=1 log p(xi|θ)− log p(θ)

•The conventional goal of optimization is to find the minimum of L(θ), but
this may lead to wasted effort and overfitting. The exponentiated nega-
tive loss might capture just the right degree of parameter uncertainty:

f (θ) ∝ exp{−L(θ)}

• Idea: Instead of minimizing the objective, let us aim to generate a single
sample from this ”posterior” (negative exponentiated objective).
•Solution: We run SGD with constant step size. With appropriate learn-

ing rates and minibatch sizes, the sampling distribution can be consid-
ered a proxy for the posterior! To this end, minimize

KL(q(θ; ε, S)||f (θ)) ≡ Eq[log f (θ)]− Eq[log q(θ)].

Variational optimal learning parameters

•For sampling distibution q(θ) ∝ exp
{
−1

2θ
>Σ−1θ

}
and for posterior

f (θ) ∝ exp{−1
2θ
>Aθ}, we find

KL(q||f ) = 1
2 (Tr(AΣ)− logA− log |Σ| − d)

c
= ε

2STr(BB>)− log(ε/S).

•Minimizing over ε yields ε∗ = 2S/Tr(BB>) for the optimal learning rate.
•We can derive a more complex result when allowing for a preconditioning

matrix H , which gives the modified Ornstein-Uhlenbeck process

dθ = −HAθ(t)dt + HBε/SdW (t).

•The KL divergence is for this more complex process is

KL = ε
2STr(BB>H) + Tr log(H) + 1

2 log ε
S − log |Σ|.

•The optimal diagonal preconditioner is H∗k ∝ 1/(2BB>)kk.
•This result relates to AdaGrad, but contains no square roots.

Experiments on real-world data

Secondary Result: Analyzing scalable MCMC algorithms

•Many modern MCMC algorithms are based on stochastic gradients
•We focus on Stochastic Gradient Fisher Scoring (Ahn et. al., 2012):

θt+1 = θt − εH∇θL̂(θt) +
√
εHEW (t)

•Above, H is a preconditioner, W (t) is a Gaussian noise, and E is a
matrix-valued free parameter. Using assumptions A1–A4, this again be-
comes an Ornstein-Uhlenbeck process:

dθ(t) = −HAθdt + H [Bε + E]dW (t).

•Minimizing KL justifies the optimal Fisher scoring preconditioner:

H∗ = 2
N(εBB> + EE>)−1.

•This derivation is shorter and follows naturally from our formalism.
•We can furthermore quantify the bias due to a diagonal approximation.

Conclusion

•Stochastic differential equations are a powerful tool to analyze stochastic
gradient-based algorithms.
•We can interpret SGD with constant learning rates as an approximate

Bayesian sampling algorithm. Minimizing KL divergence to the true pos-
terior leads to novel criteria for optimal parameters of SGD, where pa-
rameter uncertainty is taken into account.
•Using our formalism, we can analyze more complex algorithms. This will

be presented elsewhere.


