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e Stochastic Gradient Descent is an important algorithm. It minimizes an
objective function £(6) = SV, ¢:(8) based on the update

Ori1 = 0, — €VoLs(0), Ls(0) = %>, sli(0),

e Above, S; C {1,..., N} is a random subset of indices of size S, drawn
at time ¢ which constitutes the mini-batch. We assume N > S > 1.

e When ¢ is constant, SGD does not converge to a point. Instead, the
iterates of SGD converge in distribution to a stationary density.

e Goal: Analyze SGD for constant learning rates e.

e Intuition: We interpret SGD as approximate inference and the sampling
distribution as an approximation to a posterior (next column).

e Method: We use the formalism of stochastic differential equations.

Continuous-time limit of SGD revisited

A1 Assume that the gradient noise VL(6)—V £(6) is Gaussian distributed.

A2 Assume that the iterates 6(t) are constrained to a small region s.th. the
sampling noise covariance of the stochastic gradients is constant.

A3 Assume that the step size is small enough that we can approximate the
discrete-time SGD algorithm with a continuous-time Markov process.

A4 Assume that the stationary distribution of the iterates is constrained to a
region where the objective is approximately quadratic, £(6) = %HTAH.

Comments on assumptions A1-A4.
e Assumption A1 can be justified by the central limit theorem. In formulas,

VLs(0) ~ VL) +Es(0), £s(0) ~ N(0,C(0)/9),

O = e [(VL5(0) - VLO)(VLs(6) - VL)) .

e Based on A2, C'(6) = C' is constant.
Write C' = BB' and define B,;s = \/¢/S B.

O(t +1) — 0(t) = —e VL(O(L)) + v/e BysW (1),

W(t) ~ N(0,I).

e Based on A3, this equation becomes a stochastic differential equation,
do(t) = —VeL(0)dt + B./sdW (1)

e Based on A4, we derive the multivariate Ornstein-Uhlenbeck process,

dO(t) = —AO(t)dt + B, sdW (t).

e This process approximates SGD under assumptions A1-A4.

e Our approximation of SGD allows us to compute stationary distributions.
e Explicit formula for stationary distribution:

q(0) cexp{—30"S 0}, NAT 4 AY = BB,

e We can read-off how various parameters of SGD affect this distribution.

Main Result: Constant-rate SGD as approximate inference |

e For many problems in machine learning (including neural networks), the
objective has the interpretation of a negative log likelihood + log prior:

L) = =3 logp(x:|0) — log p(6)

e The conventional goal of optimization is to find the minimum of £(#), but
this may lead to wasted effort and overfitting. The exponentiated nega-
tive loss might capture just the right degree of parameter uncertainty:

f(0) oc exp{—L(0)}

e Idea: Instead of minimizing the objective, let us aim to generate a single
sample from this "posterior” (negative exponentiated objective).

e Solution: We run SGD with constant step size. With appropriate learn-
ing rates and minibatch sizes, the sampling distribution can be consid-
ered a proxy for the posterior! To this end, minimize

K L(q(0;¢,9)]|f(0)) = ggllog f(0)] —gllog q(0)].

Variational optimal learning parameters |

e For sampling distibution ¢(f) o exp{—i0'S"'6} and for posterior
£(6) o exp{—107 A8}, we find

KL(q||f) = 2 (Tr(AX) —log A — log |Z] — d) = STr(BB') — log(e/9).

2
e Minimizing over ¢ yields ¢* = 25/Tr(BB ") for the optimal learning rate.

e \We can derive a more complex result when allowing for a preconditioning
matrix H, which gives the modified Ornstein-Uhlenbeck process

df = —HAQ(t)dt + HB,;sdW (t).
e The KL divergence is for this more complex process is
KL= Tv(BB H)+ Trlog(H) + 5log & — log 3.

e The optimal diagonal preconditioner is H;: o< 1/(2BB" ).
e This result relates to AdaGrad, but contains no square roots.
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Secondary Result: Analyzing scalable MCMC algorithms |

e Many modern MCMC algorithms are based on stochastic gradients
e We focus on Stochastic Gradient Fisher Scoring (Ahn et. al., 2012):

Htﬂ — (975 — GHVQ[:(Ht) + \/EHEW(t)

e Above, H is a preconditioner, W (t) is a Gaussian noise, and F is a
matrix-valued free parameter. Using assumptions A1—-A4, this again be-
comes an Ornstein-Uhlenbeck process:

di(t) = —HAOdt + H|B. + E|dW (t).
e Minimizing KL justifies the optimal Fisher scoring preconditioner:
H*=Z2(eBB' + EE")™".

e This derivation is shorter and follows naturally from our formalism.
e \We can furthermore quantify the bias due to a diagonal approximation.

Conclusion |

e Stochastic differential equations are a powerful tool to analyze stochastic
gradient-based algorithms.

e We can interpret SGD with constant learning rates as an approximate
Bayesian sampling algorithm. Minimizing KL divergence to the true pos-
terior leads to novel criteria for optimal parameters of SGD, where pa-
rameter uncertainty is taken into account.

e Using our formalism, we can analyze more complex algorithms. This will
be presented elsewhere.




